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ABSTRACT
Energy markets are emerging around the world. In this con-
text, the PowerTAC competition has gained attention for
being a realistic and powerful simulation platform that can
be used to perform robust research on retail energy mar-
kets. Agent in this complex environment typically use dif-
ferent strategies throughout their interaction, changing from
one to another depending on diverse factors, for example,
to adapt to population needs and to keep the competitors
guessing. This poses a problem for learning algorithms as
most of them are not capable of handling changing strate-
gies. The previous champion of the PowerTAC competition
is no exception, and is not capable of adapting quickly to
non-stationary opponents, potentially impacting its perfor-
mance. This paper introduces DriftER, an algorithm that
learns a model of the opponent and keeps track of its error-
rate. When the error-rate increases for several timesteps,
the opponent has most likely changed strategy and the agent
should learn a new model. Results in the PowerTAC simula-
tor show that DriftER is capable of detecting switches in the
opponent faster than an existing state of the art algorithms
against switching (non-stationary) opponents obtaining bet-
ter results in terms of profit and accuracy.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Experimentation

Keywords
Non-stationary strategies, PowerTAC, opponent modelling,
Markov decision process, energy markets

1. INTRODUCTION
Together with the adoption of smarter energy grids comes

the idea of deregulating the energy supply and demand. En-
ergy markets are emerging in many different parts of the
world due to this shift. In fact, these smarter (deregularized)
grids have enabled producers to sell energy to consumers by

using a broker as an intermediary. This has led to the de-
velopment of several strategies for trading energy. However,
this domain remains as a challenge due to its complexity
(rich state spaces, high dimensionality and partial observ-
ability [18]), where straightforward game-theoretic analysis,
machine learning and artificial intelligence techniques fall
short. Moreover, in this complex environment it is rea-
sonable to expect that agents will use different strategies
throughout their interaction and change from one to an-
other. This will pose a problem for learning algorithms since
most of them are not capable to deal with changing strate-
gies.

Recent approaches that are based on multiagent systems
have studied the operation of energy markets. Related to
this, one particular competition that has gained attention
recently is PowerTAC [8]. It simulates an entire energy mar-
ket with producers, consumers and brokers buying and sup-
plying energy. In particular, PowerTAC simulates a whole-
sale market that operates similar to stocks. In this market,
several brokers interact with each other buying and selling
energy. Their objective is to submit optimal offers to the
market for delivery between one and 24 hours in the fu-
ture. The champion agent of the PowerTAC competition
models the wholesale market as a Markov decision process
(MDP) and its solution dictates the optimal offers to sub-
mit at each timeslot. Even though this formulation is able
to perform efficiently with reasonable results, it does not
handle non-stationary opponents (that change among one
stationary strategy to another).

This paper’s main contribution is to introduce DriftER —
Drift (based on) Error-Rate—, an algorithm based on con-
cept drift ideas that is capable of adapting quickly to non-
stationary opponents. In order to learn the environment,
DriftER treats the opponent as a stationary (Markovian) en-
vironment, but keeps track the quality of the learned model
as an indicator of a possible change in the opponent strategy.
When a strategy switch in the opponent is detected, DriftER
stops using the learned model and restarts the learning. We
compare our algorithm in the PowerTAC simulator against
two algorithms: the champion of the inaugural competition
and a state of the art algorithm for non-stationary oppo-
nents. The results show the effectiveness of our approach,
obtaining better results in terms of total profit, and accu-
racy.



2. RELATED WORK
In this section we review recent works in energy mar-

kets, non-stationary environments and then we present re-
lated concept drift approaches which provide the basis for
DriftER.

2.1 Energy markets
Markets for renewable energy are expanding, shifting in-

vestment patterns away from traditional government and in-
ternational sources to greater reliance on private firms and
banks. This results in increased decision-making and partic-
ipation from a wider variety of stakeholders (brokers) [10].
However, by so doing, new challenges have emerged, such as
predicting on energy demand [1], coordination on power dis-
tribution [13], and energy generation and distribution [23].

Different markets appear in this area, for example the
wholesale energy market, which is commonly known as day-
ahead market, is one of the most important in the energy
sector. In this market, brokers make bids (offers) for buy-
ing or selling energy delivery between one and 24 hours in
the future. The interaction happens between brokers and
commodities that they own (the good and money). The in-
teractions between the agents lead to exchange, a process
whereby the traders freely alter the allocation of commodi-
ties. Thus traders may choose to swap a good for some
quantity of money, and the amount they choose is related
to the value the trader places on the good. This value is
known as limit price. Some works do not explicitly model
other brokers, like [4], where the authors start by predicting
hourly prices, from that, a schedule is obtained by an opti-
mization model. Solving this model allows deriving a simple
bidding rule.

A second important market is the tariff (customer) mar-
ket which handles the interaction between brokers and local
producers and consumers. Previous works [15] used a sim-
ulation approach to investigate a heavily simplified compet-
itive tariff market that was modelled by a Markov decision
process [14]. The authors proposed different actions to alter
tariff prices. In [19] the authors propose a prediction-of-use
tariff that asks customers to predict a baseline consumption,
charging them based both on their actual consumption and
the deviation from their prediction.

In contrast to these two works that do not perform any
type of modelling for the wholesale energy market, our ap-
proach focuses on it. The wholesale and tariff markets are
modelled in PowerTAC, which we present in the next sec-
tion.

2.2 PowerTAC
Power TAC is a competitive simulation that models a re-

tail electrical energy market, where brokers offer energy ser-
vices to customers through tariff contracts, and must then
serve those customers by trading in a wholesale market [8].
Brokers are challenged to maximize their profits by buy-
ing and selling energy in the wholesale and tariff markets,
subject to fixed costs and constraints. The simulation envi-
ronment consists of different markets where brokers have to
take actions at each timestep (timeslot) which simulates one
hour of real time. The three main markets in PowerTAC are
the following.

• The tariff market, where brokers buy and sell energy
by offering tariff contracts that specify price and other

characteristics like early withdraw fee, bonus for sub-
scription and expiration time. Customers choose among
those different contracts and later they decide to con-
tinue or to change to a different one.

• The wholesale market allows brokers to buy and sell
quantities of energy for future delivery. It operates as
a periodic double auction [22], and its similar to many
existing wholesale electric power markets, such as Nord
Pool in Scandinavia or FERC markets in North Amer-
ica [9].

• The balancing market is responsible for the real-time
balance of supply and demand on the distribution grid.
The market creates an incentive for brokers to balance
their own portfolios of energy supply and demand in
each time slot by ensuring that they would be better off
balancing their portfolios than relying on the balancing
market to do it.

2.2.1 TacTex
The champion agent from the inaugural competition in

2013 was TacTex [18], which uses an approach based on re-
inforcement learning for the wholesale market and prediction
methods for the tariff market. For modeling the wholesale
market TacTex uses a modified version of Tesauro’s repre-
sentation of a double auction market [17]. The idea is that
states represent agent’s holdings, and transition probabili-
ties are estimated from the market event history. The model
is solved via dynamic programming every time the agent had
an opportunity to bid. TacTex uses a MDP to model the
sequential bidding process. TacTex starts a game with no
data and learns to bid online, while acting its estimates are
refined during the game. At each timeslot, it solves a MDP
with all the data collected thus far, providing the optimal
limit price of the biddings for the next hours. Even tough
TacTex learns to quickly bid in an online environment, it is
not capable of adapting to non-stationary opponents. This
is a large drawback, as many real-life strategies do not follow
a static (stationary) regime throughout their interaction. In-
stead, they either slowly change or drastically switch from
one strategy to another (either to leave the opponent off-
guard and guessing or just as a best response measure).

Now we review relevant work regarding learning in non-
stationary environments.

2.3 Non-stationary environments
Energy markets are complex and agents in that environ-

ment will probably change behaviours during their interac-
tion, which renders the environment non-stationary.

A recent approach that studies non-stationary environ-
ments is the MDP-CL framework (MDP-continuous learn-
ing) [7] which is composed of three parts: 1) A learning phase
to learn a model of the opponent in the form of a MDP, 2)
a planning phase that solves the MDP to obtain an opti-
mal policy against the modelled opponent, and 3) a process
that embeds the learning and planning phases to identify
switches in the opponent strategy. The approach has been
tested on the iterated prisoner’s dilemma. However, this ap-
proach has not been evaluated in real world scenarios such
as energy markets.

The machine learning community has developed an area
related to non-stationary environments and online learning
which is called concept drift [20]. The approach is similar



to a supervised learning scenario where the relation between
the input data and the target variable changes over time [6].

In particular, the work in [5] studies the problem of learn-
ing when the class-probability distribution that generates
the examples changes over time. A central idea is the con-
cept of context: a set of contiguous examples where the
distribution is stationary. The idea behind the concept drift
detection method is to control the online error-rate of the
algorithm. When a new training instance is available, it is
classified using the actual model. Statistical theory guar-
antees that while the distribution is stationary, the error
will decrease. When the distribution changes, the error will
increase. Therefore, if the error is greater than a defined
threshold, it means that the concept has changed and it
needs to be relearned. The method was tested on both ar-
tificial and real world datasets. Our algorithm also bases
on concept drift ideas but it is adapted to a multiagent set-
ting like is the case of Power TAC, where we study a set of
changing opponents (environments).

3. PRELIMINARIES
Now we review some important concepts of reinforcement

learning (RL), Markov decision processes, and algorithms
for learning non-stationary environments.

In RL, an agent must learn an optimal policy for maximiz-
ing its expected long-term reward in an initially unknown
Markov decision process. A MDP is specified by a tuple
< S,A, T,R > where: S is the set of states in the world. A
is the set of available actions that affect the environment.
The transition function T : S × A → S represents the dy-
namics of the process. It gives a probability T (s, a, s′) of
transitioning to state s′ while being in state s and perform-
ing action a. The reward function R(s, a), specifies a value
obtained by the agent when performing action a in state s.

3.1 Modelling non-stationary strategies
Modelling non-stationary strategies requires the model to

be updated frequently (every time a change occurs). One
way to update such a model is by identifying when the model
is inconsistent with the reality. When such inconsistency
is revealed, one can safely discard the previously acquired
model and learn a new model that captures the change in the
opponent strategy. One approach that has been successful
in identifying sudden strategy switches1 is MDP-CL.

MDP-CL (MDP - continuous learning) [7] is a model based
multiagent learning technique based on RL and MDPs, de-
signed to handle non-stationary opponents. It consists of
three parts. Learning is the initial phase and uses an ex-
ploration strategy in order to learn the opponent’s model.
MDP-CL learns MDPs to capture the opponent’s dynamics
(its strategy). Examples of exploration strategies include:
random behaviour, softmax, and R-max[3]. The next phase
is planning, where an optimal policy π∗ is computed (us-
ing the learned model) to play against the opponent. To
solve it, value iteration is used [2]. The computed policy
is used and the switch detection process starts. Switching
from an exploration strategy to and optimal strategy could
trigger a response from the opponent, but the agent should
to be able to detect such changes. For this another model is
learned concurrently and compared every w rounds, if dif-

1Strategy switches are a way of inducing a non-stationary
strategy.

ference between models is greater than a threshold then it
means a switch has happened and the algorithm restarts the
learning phase discarding the previous model.

4. DRIFTER
When facing non-stationary opponents two aspects are

important: exploring the opponent actions to detect switches
and to keep track of the opponent model. DriftER treats the
opponent as a stationary (Markovian) environment however
it uses concept drift ideas to keeping track on the quality
of the learned model as an indicator of a possible change
in the opponent strategy. When a switch in the opponent
strategy is detected, DriftER resets its learned model and
restarts the learning. In order to promote an efficient oppo-
nent switch detection a new type of exploration is applied,
which is called drift exploration.

4.1 Modeling wholesale electricity markets
Recall that in PowerTAC a wholesale broker can place

a bid for buying or selling energy by issuing a tuple 〈t, e, p〉
that represents the timeslot t the broker makes a bid/ask for
an amount of energy e (expressed in megawatt-hour MWh)
at a limit price p of buying/selling. At each timeslot, Power-
TAC provides (as public information) market clearing prices
and the cleared volume. It also provides as private informa-
tion (only to each respective broker) the successful bids and
asks [8]. A bid/ask can be partially or fully cleared. When
a bid is fully cleared the total amount of energy will be sent
at the requested timeslot, if a bid was partially cleared the
offer was accepted but there is not enough energy and only
a fraction of the requested energy will be sent.

Next is the MDP formulation of TacTex [18]:

• States: s ∈ {0, 1, . . . , n, success}, represent the times-
lots for future delivery for the bids in the market.
s0 := n, terminal States: 0, success.

• Actions: values that represent limit prices for the offers
in the wholesale market.

• Transition: a state s ∈ {1, . . . , n} transitions to one
of two states. If a bid is partially or fully cleared, it
transitions to the terminal state success. Otherwise,
a state s transitions to state s − 1. The transition
probability is initially unknown.

• In state s = 0, the reward is a balancing-penalty. In
states s ∈ 1, . . . , n, the reward is 0. In state success,
the reward is the limit price of the successful bid.

The MDP’s solution determines an optimal limit-price for
each of the n states. TacTex is always in states 1, . . . , n of n
concurrent bidding processes. Therefore, it solves the MDP
once per timeslot, and submits the n optimal limit-prices to
the n auctions.

Since TacTex formulation uses MDPs and is the champion
of the 2013 competition, we will use it as comparison in the
experiments. With this in mind, we propose DriftER, which
overcomes TacTex’s limitation of not being able to handle
non-stationary opponents and MDP-CL, which is dependent
on a parameter w whose optimal value can only be known
a-posteriori (i.e., after the game has been played). The pro-
posed approach draws insights from concept drift and pro-
poses a new type of exploration (drift exploration).



4.2 Learning an opponent model
We now define the MDP that models the wholesale mar-

ket in DriftER. We use the same representation as TacTex
(see Section 4.1). In order to learn the transition function
we use the set of cleared transactions CT .2 Each cleared
transaction tr ∈ CT is associated with a state s (timeslot
for future delivery) and contains the information of cleared
energy cE and the clearing price cP . Then for each next
state s′ executing action limitPrice we compute the value:

tlimitPrice
s′ :=

Ptr∈CT [s],t.cP<limitPricet.cE

t ∈ CT [s]t.cE

and the transition function is

T (s, a, s′) =

{
tas′ if (s′ == success)
1− tas′ otherwise

The value tlimitPrice
s′ captures the probability of being

in state s using action limitPrice to go to state success
(cleared transaction). It considers (from the set cleared
transactions) only the clearing prices that are lower than
the proposed limit price. If the transaction is not cleared, it
goes to state s−1. Because the agent has no initial informa-
tion, it must collect data to develop a transition function.
It starts with random actions during the first k timeslots,
called the learning phase. After this phase the MDP can be
solved. We assume that during learning phase the opponent
will remain stationary.

4.3 Drift exploration
Most exploration techniques decrease their exploration rate

over time so that the learned (optimal) policy can be applied.
However, against non-stationary opponents, it is well known
that exploration should not decrease so as to detect changes
in the structure of the environment at all times [11].

The problem with non-stationary environments is that
opponent strategies may share similarities in their induced
MDP (specifically between transition functions). If the agent’s
optimal policy produces an ergodic set of states, and this
part of the MDP is shared between opponent strategies, the
agent will not perceive such strategy change, which results in
a suboptimal policy and performance. The solution for this
is to explore, even when an optimal policy has been learned.
We coined this type of exploration as“drift exploration”. For
this reason we applied drift exploration in the form ε-greedy
even when we have an optimal action to perform (a learned
MDP).

4.4 Switch detection
Approaches such as MDP-CL that compare pairs of mod-

els in fixed timesteps are not efficient because two param-
eters need to be tuned: the window size that controls the
how often comparisons are made and the threshold value
that defines a measure of how different models should be to
mark switch in the strategy. Both parameters depend heav-
ily on the domain and opponent. In contrast, our proposed
algorithm keeps track on the opponent at every timestep in
an efficient and practical way, with a measure independent
of the model of the opponent.

The DriftER approach considers online learning: at each
timestep the algorithm decides to continue with the current

2Cleared transactions are those bids that were accepted in
the market.

model or change to a new one. For instance, assume the
agent already has a learned model of the opponent (as pre-
sented in Section 4.2). Using that model, it can predict at
each timestep the next state of the opponent ŝi and can be
compared with the real value si. This comparison can be
binarized with correct/incorrect values and this can be seen
as a Bernoulli trial. Assuming a sequence of independent
identically distributed events will produce a Bernoulli pro-
cess. For each i in the sequence, the error-rate error(si)
is the probability of observing incorrect. Statistical theory
guarantees that while the class distribution of the examples
is stationary, the error rate error(si) will decrease when i
increases.

At this point the error rate can be improved by taking
into consideration a confidence interval over the error rate
conf(si) by using the Wilson score [21]. In this way the num-
ber of examples seen in the sequence are taken into account
and with more data our estimates will have more confidence.

The idea of the DriftER is keeping track of this conf(si)
value at each timestep. We will expect a decrease in this
value which indicates the current model is correct and useful.
However, conf(si) may increase for two reasons. The first
one is noise in the opponent, which can happen when trying
to model opponents that make mistakes or explore. In this
case, we do not want to learn a new model (since the model
has not changed) but instead should stay with the current
one. The second reason for an increase in the conf(si) value
is that the opponent has switched to a different strategy and
the learned model is no longer useful for predictions. In this
case, we want to stop using the current model and learn
a new one. In order to fulfil these requirements we keep
track of the first derivate conf ′(si) of the last n timesteps.
if conf ′(si) > 0 == true in at least last m out of n steps
the algorithm decides a switch is detected and stops using
the current model (restarting the learning phase).

4.5 Tariff Market
Our approach considers bidding in the wholesale market.

However, its not possible to isolate markets on PowerTAC
thus to perform experiments we propose a simple strategy in
the tariff market. The approach is to publish one flat tariff
which is the average of the tariff’s history.

5. EXPERIMENTS
Experiments were performed on the PowerTAC simula-

tor. We first present results only on the wholesale market
and then on the complete PowerTAC setting. To perform
comparisons we selectTacTex-WM,3 which is the champion
of the 2013 competition, and MDP-CL which is not specific
for PowerTAC but is designed for non-stationary opponents.
The opponent is non-stationary in the sense that uses two
stationary strategies: it starts with a fixed limit priced Pl

and then in the middle of the interaction changes to a dif-
ferent (higher) fixed limit price Ph. Even that we used a
fixed timeslot for the switch in the opponent this value is
not known for the learning agents since in open environ-
ments it is reasonable to not known the possible times of
switching of the opponents. Also even though we define a
fixed limit price and there is only a single opponent (other
buying broker), PowerTAC includes as default 7 wholesale

3We only use the wholesale market part of TacTex (TacTex-
WM)
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Figure 1: Cleared transactions of DriftER (red squares) and the non-stationary opponent (blue dots). In (a)
the opponent uses as limit price the value 20 whereas in (b) it uses a limit price of 34.

energy providers as well as 1 wholesale buyer to ensure liq-
uidity of the market [8] which introduces another source of
uncertainty and randomness added in the simulation.

The MDP that models the opponent uses the following
parameters: the number of states was set n = 6, and the ac-
tions represent limit prices with the values {15, 20, 25, 30, 35}.
The opponent started with a Pl = 20 and then changed to
Ph = 34. In the first case the learning agent needs to bid
using a price > 20 (25, 30, 35). Later when the opponent
uses a limit price of 34, the only bid that will be accepted is
35. Both the learning agent and the opponent have a fixed
demand 20Mwh for each timeslot which is greater than the
energy generated by the providers.

We present results on terms of average accuracy, confi-
dence on error rate and profit. The learned MDP contains
a transition function for each (s, a) pair, comparing the pre-
dicted next state with the real one gives an accuracy value.
At each timestep the agent submits n bids and its learned
model predicts if those bids will be cleared or not. When
the timestep finishes it receives feedback from the server and
compares the predicted with the real transactions. An aver-
age of those n predictions is the accuracy of each timestep.
A value close to 1 means perfect prediction. A similar mea-
sure is confidence over error-rate as described in Section 4.4,
the main difference is that it takes into account the number
of samples used to obtain the error rate. Finally, profit is
defined on PowerTAC as the income minus the costs (balanc-
ing, wholesale and tariff markets). Each competition had a
duration of 200 timeslots (each timeslot simulates one hour)
equivalent to simulation of 8 days and 8 hours. We used
default parameters for the all other settings in PowerTAC.

5.1 Learning a model of the opponent
The first experiment aims to determine the size of learn-

ing window for the learning agents. TacTex used only 6
timeslots [18] for gathering information and then stopped
the learning period and used the MDP policy. However,

Table 1: Accuracy results of TacTex-WM while
varying the learning size. The competition lasted
200 timeslots.

Learning Size Accuracy
5 0.550 ± 0.05
15 0.563 ± 0.11
25 0.679 ± 0.05
35 0.674 ± 0.10
45 0.672 ± 0.06

since this setting is different we decided to evaluate different
sizes of learning periods and compare their accuracy. In this
case the opponent used a stationary strategy for the com-
plete interaction. The duration of the competition was 200
timeslots.

In Table 1 we present the learning size and the respective
accuracy for TacTex-WM. Results show that TacTex-WM
performs well and learns fast with approximately 25 times-
lots obtaining an accuracy of nearly 70%. From these ex-
periments we set the learning phase to 25 for the learning
algorithms. We note that increasing further the learning pe-
riod does not have an impact on accuracy. This happens due
to the limited set of actions and also because the proper lim-
itation of this representation. The next section introduces a
non-stationary opponent that changes from one strategy to
another.

5.2 Non-stationary opponents
Figures 1 (a) and (b) show graphs of the cleared trans-

actions of DriftER against the non-stationary opponent. In
1 (a), we note three clusters for the cleared transactions
(squares) of DriftER, each cluster correspond to the limit
prices {25, 30, 35}4. In contrast, accepted bids for the oppo-
nent (dots) always have a value lower to 20 (since it is the

4PowerTAC takes these prices as negative since it as a buy-
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Figure 2: Error rate of (a) TacTex-WM and (b)
MDP-CL while comparing with DriftER.

stationary limit price). In Figure 1 (b), we depict a simi-
lar graph but after the opponent has switched to the second
strategy (the limit price is now 34) and DriftER has updated
its policy. In this figure we can see that now the opponent
dominates the cleared transactions. The only limit price
that produces cleared bids for DriftER is 35, thus we can
see a cluster near that value. These figures show how the
optimal policy of the learning agent needs to be updated to
cope with the opponent switching behavior.

Now we compare the three learning algorithms in terms of
error-rate against the switching opponent. In Figure 2 (a) er-
ror rates of TacTex-WM and DriftER are depicted. We can
observe that for both algorithms, after the learning phase
(from timeslot 25) the error rate reduces. However, starting
from round 100 (when the opponent changes its strategy)
the error rate of TacTex-WM increases since it is not able
to adapt to the opponent. In contrast, DriftER shows an
increase in the error rate after the opponent switch (times-
lots 100 to 110), however at timeslot 110 DriftER stops us-
ing the learned policy and restarts the learning phase which
ends at timeslot 135. At this point its confidence over the
error rate is high (since it is just a new model) and it shows
a peak. From that point DriftER has learned a new MDP
and a new policy which reduces the error rate consistently.
In Figure 3 (b) error rates of MDP-CL and DriftER are
depicted. We can observe that after the opponent’s switch
both algorithms are able to detect it. However, since MDP-
CL performs comparisons to detect switches every w steps

ing action

Table 2: Number of average timeslots for switch de-
tection (Avg. S.D. Time), accuracy, and traded en-
ergy of the learning agents against a non-stationary
opponent.

Avg. S.D. Time Accuracy Traded E.
MDP-CL 85.0 ± 55.0 57.55 ± 28.56 2.9 ± 1.3
DriftER 33.2 ± 13.6 67.60 ± 21.21 4.4 ± 0.5

(w = 25 in this case) at least it has to wait 25 timeslots (in
contrast to 10 timeslots of DriftER).

We performed more experiments reducing the w parame-
ter in order to reduce the time to detect switches. However,
we noticed that we also needed to select an appropriate pa-
rameter for the threshold. Optimizing these parameters is
time consuming since w ∈ N and threshold ∈ R. We set
w = 25 and selected the best value (based on accuracy) for
setting threshold. In next section we review directly both
MDP-CL and DriftER against switching opponents.

5.3 Detecting switches in the opponent
Now we compare MDP-CL and DriftER since both ap-

proaches handle non-stationary opponents. We measure the
average number of timeslots needed to detect the switch
and we also measure the accuracy and the traded energy
as a measure of indirect cost provided by PowerTAC, the
more time it takes to detect the switch the more time the
agent will trade less energy. In Table 2 we depict the re-
sults for MDP-CL (using w= 25) and DriftER. In this case
the competition lasted 250 timesteps, the opponent switched
at timestep 100. Results are the average of 10 iterations.
Results show that DriftER needs less time for detecting
switches and also shows a lower standard deviation showing
that is more robust than MDP-CL. DriftER also obtained
better accuracy (explained by the fast switch detection) and
as a result is capable of trading more energy.

Now we review the three approaches in Figure 3 (a), (b)
and (c) we depict the cumulative traded energy of the learn-
ing agents and the switching opponent (timeslot when the
opponent switches is displayed with a vertical line). From
the figures we note that in the first part of the game (before
the vertical line) TacTex-WM (Figure 3 (a)), MDP-CL (Fig-
ure 3 (b)) and DriftER (Figure 3 (c)) increase consistently
their traded energy. In contrast, the traded amount of en-
ergy for the opponent is severely limited since the learning
agents are clearing most of their bids. However, at timeslot
100 the opponent changes its strategy and increases their
cleared transactions (traded energy). Against TacTex-WM
the opponent increases its traded energy for the rest of the
competition (see Figure 3 (a)). As a result TacTex-WM re-
duces its traded energy. MDP-CL and DriftER (see 3 (b)
and (c)) are affected by the change in strategy. However,
after some timeslots (where it has detected the switch and
learned a new policy) they start increasing its traded energy.
Note that MDP-CL takes more timesteps than DriftER.
Therefore DriftER achieves better results due to a faster
switch detection.

We have discussed results only on the wholesale market.
In order to evaluate the algorithms in terms of profit on Pow-
erTac we implemented a simple strategy on all the learning
algorithms in order to perform a fair comparison (see Sec-
tion 4.5). In Figure 4 we depict the cumulative profit of
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Figure 3: Amount of traded energy for (a) TacTex-WM, (b) MDP-CL and (c) DriftER against the non-
stationary opponent in a competition of 250 timesteps. Timestep when the opponent switches is displayed
with a vertical line.

(a) (b) (c)

Figure 4: Profit of (a) TacTex-WM, (b) MDP-CL and (c) DriftER against the non-stationary opponent in a
competition of 250 timesteps. Timeslot where the opponent switches is displayed with a vertical line.

(a) TacTex-WM and (b) MDP-CL and (c) DriftER against
the non-stationary opponent, the timeslot where the oppo-
nent switches between strategies is noted with a vertical line.
From this figure we note that TacTex-WM profits increase
before the opponent switch and the decrease after it. In
the end of the interaction they both obtain a similar profit.
In contrast, DriftER profits increase again after the switch.
In terms of cumulative profits DriftER obtained in average
80ke more profits than the opponent. MDP-CL was capa-
ble of detecting switches but took much more timesteps and
it obtained even worse profit than TacTex-WM.

5.4 Noisy non-stationary opponents
In the previous experiments the opponent switched be-

tween two fixed strategies. In this section we present a better
approximation to real-world strategies. The opponent has a
limit price Pl = 20.0 with a noise of ±2.5 (bids are in the
range [18.5 − 22.5]). Then, it switches to Ph = 34.0, with
bids in the range [31.5, 36.5]. The rest of the experiment
remains the same as in the previous section.

Similar to the non-stationary opponent without noise, DriftER
is capable to adapt to the switching opponent and there-
fore it increases its profits after the switch. In Table 3 we
show the total profits of the learning agents against the non-
stationary opponents with, and without, noise. From the ta-
ble, note that against fixed opponents TacTex-WM obtains
the lowest score, while obtaining a low standard deviation.
When the opponent increases the noise by using a range of
values to bid, TacTex-WM reduces its profits and increases

its standard deviation. MDP-CL shows competitive profit
scores with fixed opponents, but it shows a high standard de-
viation. Against a noisy opponent MDP-CL obtained lower
scores than the opponent. DriftER shows the second best
score in profit and obtains it with lower standard deviation
than MDP-CL against fixed opponents. Against noisy non-
stationary opponents shows a good compromise obtaining
competitive profits, a reasonable standard deviation and its
the only algorithm which obtains better scores than the op-
ponent which is explained by the fact than it is capable to
quickly adapt to the new strategy and obtaining an optimal
policy which prevents the opponent to increase its profits.

6. CONCLUSIONS AND FUTURE WORK
Energy markets are emerging in different parts of the

world. PowerTAC competition has gained attention for be-
ing a powerful simulation platform that can be used to per-
form robust research on retail energy markets. Wholesale
market is one of the most important markets since needs
to guarantee a certain amount of energy to the agent. The
previous champion of the competition was not capable of
adapting quickly to non-stationary opponents (which change
from one stationary strategy to another), impacting their to-
tal profits. We propose DriftER, an algorithm that learns
a model of the opponent in the form of a MDP and keeps
tracks of its error-rate. When the error-rate increases for
several timesteps, it means the opponent has changed its
strategy and we must learn a new model. Results on the
PowerTAC simulator show that DriftER is capable of de-



Table 3: Average profit of the learning agents against non-stationary opponents with and without noise.
TacTex-WM MDP-CL DriftER

Agent Opp Agent Opp Agent Opp
Fixed NS 219.0 ± 7.5 228.7 ± 31.7 261.3 ± 65.8 253.5 ± 75.5 253.0 ± 38.9 228.7 ± 64.2
Noisy NS 198.0 ± 41.3 197.6 ± 24.78 260.1 ± 75.0 305.6 ± 41.18 255.9 ± 39.9 229.0 ± 38.2

tecting switches in the opponent faster than a state of the
art algorithms. Future work will address on using trans-
fer learning ideas for not forgetting the previous model but
using it to promote a fast learning.
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