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ABSTRACT
A stock market is a highly complex dynamical system. Stock-
price movements are not solely driven by fundamental val-
ues but in particular influenced by short term trading be-
haviour. Chartists use trends to forecast future price direc-
tions, whereas fundamentalists estimate stock prices based
on dividend payouts or company earnings. Such strategies
can similarly be deployed in automatic trading agents, which
already account for a large portion of current trading activ-
ity. It is therefore vital to understand how these trading
strategies behave in different scenarios, and how the inter-
play of strategies may lead to various market outcomes. In
this paper we analyse the dynamics of three different trading
strategies: fundamentalist, chartist, and zero-information
traders, who base their trading behaviour on the current
market price only. We simulate stock markets with various
constellations of trading agents, and compare their evolu-
tionary strength. Our results show that it is not straight-
forward to predict in advance which trading strategy will
perform best. Fundamentalists outperform other traders,
and drive them out of the market, when information is freely
available. If fundamental information is costly, chartists may
thrive, potentially destabilising the market.

1. INTRODUCTION
Markets play a central role in today’s society and find

wide application ranging from stock markets to consumer-
to-consumer e-commerce [1, 2]. Achieving accurate mar-
ket forecasts decides over trading success or losses. There
are two main types of trading strategies in todays markets:
fundamentalists and chartists [8, 19]. Fundamentalists use
a forecasting model that fits the actual economy and cor-
rectly identify the fundamental driving forces of the market.
Chartists, also called technical analysts, use an autoregres-
sive process to predict future price developments based on
recent trends.

One might be tempted to conjecture that fundamental-
ists eventually drive chartists out of the market. After all,
chartists try to exploit an autocorrelation structure in the
price series which in turn is mainly a result of their own
trading behaviour – not an underlying feature of the mar-
ket. Rational fundamentalists must surely be superior as
they base trading decisions on actual fundamental facts.

However, fundamentalists are not strictly rational. Future
fundamental values (e.g. earnings or dividends) of a com-
pany are not known at present time and must be predicted
using a model. The model must match the economy that

drives the market and model parameters must be adjusted
accordingly. A mismatch in model choice, or uncertainty in
parameter estimates that deviate from the ones that deter-
mine the underlying process inevitably cause bounded ratio-
nality and thus the risk for false decisions.

In this paper, we study a microscopic market model with
traders of three different types: fundamentalists, chartists,
and zero-information traders. Zero-information traders use
no external information and trade around the current mar-
ket price. We analyse static markets in which traders fol-
low a pre-set trading strategy, thereby gaining insights into
the relative performance of the different strategies, and we
check the resulting price series for stylised facts of real fi-
nancial time series, which indicate the validity of our model.
Building on these insights, we then investigate a dynamic
market in which traders may switch to a more profitable
trading strategy at any time. In particular, we investigate
whether chartists can survive in a market and coexist with
fundamentalists, or if indeed chartists are eventually driven
out of the market.

2. BACKGROUND
Some background information is needed for the remain-

der of this paper, which we present here. Firstly, we de-
scribe auctions and their application in stock markets. Sec-
ondly, we discuss evolutionary game theory and in particular
the replicator dynamics which form the basis of our analy-
sis. Finally, we introduce heuristic payoff tables, as means
of capturing the relative evolutionary strength of high level
trading strategies.

2.1 Auctions
Auctions are highly efficient match making mechanisms

for trading goods or services. Various sets of rules exists to
conduct an auction, yielding different transaction volumes,
transaction delays, or allocative market efficiency. Here, we
focus on double auctions, which essentially provide a plat-
form for buyers and sellers to meet and exchange a com-
modity against money. A taxonomy of double auctions espe-
cially tailored to automated mechanism design can be found
in [15]. Double auctions maintain an open book of bids
(offers to buy at a specified price) and asks (offers to sell
at a specified price). Two principle forms are the clearing
house auction and continuous operation auction. In a clear-
ing house auction, orders are collected for a trading period
(e.g., one day) and matched, or cleared, after the trading
period is closed. This mode of operation allows for high
allocative efficiency, but incurs delays in the transactions.



In contrast, continuous operation immediately establishes a
transaction as soon as any trader is willing to buy at the
ask price. This mode allows higher transaction rates at the
cost of some allocative efficiency. Experiments in this arti-
cle will use continuous operation mode, since it reflects the
day-time operation mode of many stock markets, such as
the NYSE [1].

2.2 Evolutionary game theory
Auctions provide a dynamic environment with a lot of

traders (agents) that adapt to each other while compet-
ing for revenue. Learning in such multi-agent systems is
generally complex and poses many challenges that inspire
prescriptive, descriptive and normative research [17]. Evo-
lutionary game theory provides a methodology to analyse
multi-agent learning, replacing assumptions from game the-
ory like rationality by evolutionary concepts such as pressure
of natural selection [22].

The evolutionary perspective considers a population of in-
dividuals, where each individual belongs to one of several
species. These species generally relate to atomic strategies,
or to information levels within this article. Two core con-
cepts are the replicator dynamics, describing how a popula-
tion evolves, and evolutionarily stable states. The replica-
tor dynamics formally define the population change ẋ over
time, where x = (x1, x2, . . . , xn) describes the distribution
of n species in the population:

ẋi = xi

[
fi(x)−

∑
j

xjfj(x)

]
(1)

The payoff function fi(x) can be interpreted as the Dar-
winian fitness of each species i. Intuitively, (1) describes
how species that do better than average in the population
thrive, whereas species that do worse decline. Evolution-
arily stable state are such population distributions x that
are fixed points of the replicator dynamics, i.e., ẋ = 0, and
where small perturbations |x̂−x| < ε would be driven back
to x by selection pressure, i.e., by following the replicator
dynamics.

Previous research has demonstrated the viability of evolu-
tionary game theory to analyse meta strategies in simulated
auctions [11, 13], and to compare clearing house against con-
tinuous double auctions [16]. Here, we follow a similar anal-
ysis procedure, building on and extending the market model
of Hennes et al. [11] to include chartists, as is described in
Section 3.

2.3 Heuristic payoff tables
The evolutionary model assumes an infinite population.

We cannot compute the payoff for such a population directly,
but we can approximate it from evaluations of a finite pop-
ulation. All possible distributions over k trading strategies
can be enumerated for a finite population of n individuals.
Let N be a matrix, where each row Ni contains one discrete
distribution. The matrix will yield

(
n+k−1

n

)
rows. Each dis-

tribution over trading strategies can be simulated using the
market model, described next in Section 3, returning a vec-
tor of average expected relative market revenues u(Ni). Let
U be a matrix which captures the revenues corresponding
to the rows in N , i.e., Ui = u(Ni). A heuristic payoff ta-
ble H = (N,U) is proposed by Walsh et al. to capture the
payoff information for all possible discrete distributions in a

finite population [23].
In order to approximate the payoff for an arbitrary mix

of strategies in an infinite population distributed over the
species according to x, n individuals are drawn randomly
from the infinite distribution. The probability for selecting
a specific row Ni can be computed from x and Ni:

P (Ni|x) =

(
n

Ni1, Ni2, . . . , Nik

)
k∏

j=1

x
Nij

j

The expected payoff fi(x) is computed as the weighted com-
bination of the payoffs given in all rows:

fi(x) =

∑
j P (Nj |x)Uji

1− (1− xi)k

If a discrete distribution features zero traders of a certain
information type, its payoffs cannot be measured and Uji =
0. This expected payoff can be used in (1) to compute the
evolutionary population change according to the replicator
dynamics.

3. MARKET MODEL
Our market model is based on a continuous double auc-

tion with open order book, in which all traders can place bids
and asks for shares. We closely follow the market model as
described by Tóth and Scalas [20], Tóth et al. [21], Huber et
al. [12], and Hennes et al. [11] in order to be comparable. In
the following we firstly describe the daily operation of the
market. We then discuss the value of information, follow-
ing the dividend discount model, and the trading strategies
derived from this model. Finally, we present the different
noise and cost functions used in the experiments.

3.1 Market Operation
The current value of a share is inherently determined by

the revenue that one is expected to gain from holding the
share in the future. In our model, these revenues come from
dividends that are paid out regularly based on the number of
shares owned at that point in time. The stream of dividends
follows a Brownian motion random walk (as in e.g. [20, 12]),
given by:

Dt = Dt−1 + ε

where Dt denotes the dividend in period t, with D0 = 0.2,
and ε is a normally distributed random term with µ = 0 and
σ = 0.01, i.e., ε ∼ N (µ, σ2).

We simulate the market over 30 trading periods, each
lasting 10 · n time steps, where n is the number of traders
present. This ensures that all traders have ample opportu-
nity to trade within each period. All traders start with 1600
units cash and 40 shares, each worth 40 initially. At the be-
ginning of each period, all traders put an initial bid or ask
in the book (opening call). Hereafter, at every time step a
trader is selected at random who can then either accept an
open order, or place a new bid or ask, according to his trad-
ing strategy (described below). When an order is accepted,
the two traders involved exchange one share (the seller) in
return for the asked price (the buyer). At the end of each
period, dividend is paid based on the shares owned, and a
risk free interest rate (0.1%) is paid over cash. The perfor-
mance of the traders is measured as their total wealth after
the 30 periods, i.e., the sum of their cash and share hold-



ings, where each share is valued according to the discounted
future dividends (see below).

3.2 Dividend Discount Model
The dividend discount model is based on the theory that

the intrinsic present value of a share is based on the dis-
counted sum of its future dividend payments. As such, com-
puting the current value of a share relies on a good estimate
of these future dividends, which is the core of the funda-
mentalist trading strategy. The most widely used equation
to compute this value is Gordon’s growth model [10, 9]. The
model assumes that we require a certain rate of return r > 0
on our investment. For example, if r = 0.005, a share must
return 0.5% per trading period for it to be a worthwhile
investment. This rate r is also called the discount rate.
Gordon’s growth model assumes that dividends grow at a
constant rate g. If D0 is the current dividend payout, the
current stock value can be computed as follows:

V =

∞∑
t=1

D0
(1 + g)t

(1 + r)t
= D0

1 + g

r − g

Let us assume the dividends are constant over time, i.e. ∀i :
Dt = D and g = 0. The stock value simplifies to:

V =

∞∑
t=1

D

(1 + r)t
(2)

The infinite series of (2) converges to D/r as 1/|1 + r| < 0 with
r > 0. For example, a stock that pays a constant dividend
of 0.2 per share has a current value of V = 0.2/0.005 = 40.
This logic underlies the starting price of 40 for each share,
given initial dividend value D0 = 0.2.

Differently informed traders can be implemented by vary-
ing the amount of foresight knowledge that they have about
future dividends. Note that this applies to fundamentalists
only; chartists rely on past data only, which is readily avail-
able. In trading period t = k, we say that fundamentalists of
the first information level, F1, know only the dividend Dk,
and in general traders of information level j, labelled Fj ,
know Dk, . . . , Dk+j−1. Therefore, the discounted dividend
payoff that is guaranteed for traders with information level
Fj is

j−1∑
i=0

Dk+i

(1 + r)i

and the future discounted dividends for t > k + j − 1 are
estimated according to (2) with a constant D = Dk+j−1:

∞∑
t=k+j−1

Dk+j−1

(1 + r)t
=
Dk+j−1

r
(3)

As (3) estimates future discounted dividends from period
t = k+ j−1 on, (3) itself must be discounted by 1

(1+r)j−1 to

adjust payouts to current value prices. The complete stock
value estimate for trader Fj is thus:

E(V |Fj , k) =

j−1∑
i=0

Dk+i

(1 + r)i
+

Dk+j−1

r(1 + r)j−1
(4)

To put it intuitively, a trader of information level Fj knows j
future dividends and assumes dividends stay fixed from that
point on. This results in a cumulative information structure,
where insiders know at least as much as averagely informed
traders.

Algorithm 1 Fundamentalist trading strategy

1: pv ← E(V |Fj , k) according to (4)
2: if pv < bestBid then
3: acceptOrder(bestBid)
4: else if pv > bestAsk then
5: acceptOrder(bestAsk)
6: else
7: ∆ask = bestAsk − pv
8: ∆bid = pv − bestBid
9: if ∆ask > ∆bid then

10: placeAsk(pv + 0.25 ·∆bid · N (0, 1))
11: else
12: placeBid(pv + 0.25 ·∆ask · N (0, 1))
13: end if
14: end if

3.3 Trading strategies
We use three different trading strategies in our experi-

ments. Fundamentalist use their knowledge of future divi-
dends to estimate the current value of the stock and base
their trading decision on that estimate. Chartists look for
trends in the past market prices, and traders without any in-
formation use the zero-information strategy that only takes
the current market price of the shares into account.

3.3.1 Fundamentalists
Fundamentalists completely rely on the information they

receive. The fundamentalist strategy is detailed in Algo-
rithm 1 (see also [20]). In essence, the traders compare their
estimated present value pv = E(V |Fj , k), as given by (4),
with the current best bid and ask in the book. If they find
a bid (ask) with a higher (lower) value than their estimate,
they accept the offer. Otherwise, they place a new order
between the current best bid and ask prices. Naturally, the
trader should own enough shares or cash to accept or place
an order.

The cumulative information structure described by the
dividend discount model allows to compare fundamentalists
with different amounts of foresight knowledge. In the exper-
iments presented in this paper we use two types of funda-
mental strategies: averagely informed traders with informa-
tion level 3, and fundamentalists with information level 9.
These are chosen as they accurately reflect the dynamics of
differently informed traders [11]

3.3.2 Chartists
Chartists analyse past trading prices, and look for trends.

If they see an upward trend in the market price, they see
this as an opportunity to buy; if the trend goes down, they
sell. The algorithm used in this work is summarised in Al-
gorithm 2 (see also [20]). The traders look only at the dif-
ferences between the four last prices. If each of these differ-
ences is positive, the chartist expects an upward trend and
is willing to buy at a slightly higher price (lines 2 and 3). If
the differences are negative, the expectation is a downward
trend, and similarly the chartist will try to sell at a slightly
lower price (lines 9 and 10). If no trend can be observed,
the chartist places a new order in the book.

3.3.3 Zero-Information Traders
The zero-information trading strategy only takes the cur-

rent market price into account when deciding whether to



Algorithm 2 Chartist trading strategy

1: pv ← Pk {current market price}
2: if Pk−3 < Pk−2 ∧ Pk−2 < Pk−1 ∧ Pk−1 < Pk then
3: pv ← pv + |N (0, 1)|
4: if pv > bestAsk then
5: acceptOrder(bestAsk)
6: else
7: placeBid(pv)
8: end if
9: else if Pk−3 > Pk−2 ∧ Pk−2 > Pk−1 ∧ Pk−1 > Pk then

10: pv ← pv − |N (0, 1)|
11: if pv < bestBid then
12: acceptOrder(bestBid)
13: else
14: placeAsk(pv)
15: end if
16: else
17: ∆ask = bestAsk − pv
18: ∆bid = pv − bestBid
19: if ∆ask > ∆bid then
20: placeAsk(pv + 0.25 ·∆bid · N (0, 1))
21: else
22: placeBid(pv + 0.25 ·∆ask · N (0, 1))
23: end if
24: end if

accept or place an order. These traders simply trade ran-
domly around the current market price. Specifically, zero-
information traders use the fundamentalist strategy given
in Algorithm 1, with the difference that line 1 is replaced
by pv ← Pk, where Pk is the current market price at time
k. The reasoning behind this strategy is based on the effi-
cient market hypothesis, which states that the all available
information is reflected in the market price [14]. As such,
trading around the market price could be a safe choice. The
zero-information strategy serves as a base line for both fun-
damentalists and chartists. Fundamentalists with no fore-
sight (information level 0) trade following this strategy, as do
chartists when they do not observe any trend in the market
price.

3.4 Cost and noise
So far we have taken the foresight knowledge of funda-

mentalists as a given. Their information level determines
how many trading periods they can look ahead, but other
than that the information is reliable and comes for free. In
reality, acquiring such information might be costly, and the
data itself may be uncertain. For example, limited foresight
knowledge might be obtained by reading financial news let-
ters and company statements, whereas a detailed long-term
outlook requires hiring experts. Similarly, short-term fore-
sight might be more reliable than long-term estimates. In
order to model these effects we introduce various cost and
noise functions, which we then use in the experiments in
order to investigate their effect on the fundamentalists’ per-
formance. Chartists and zero-information traders rely on
current and past market prices only, which we assume to be
freely available and reliable.

We use three different cost functions in our experiments,
as shown in Figure 1a. The fixed cost function assumes
that each fundamentalist pays the same fixed amount per
trading period, regardless of their information level. We can
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Figure 1: Different cost and noise functions used in the
experiments.

also assume that traders have to pay for each additional
bit of information, yielding a linear cost function. Finally,
the quadratic cost function is based on the idea that it gets
increasingly difficult to obtain more information. In each
case, traders pay the required cost at the end of each trading
period.

Similarly, we employ three different types of noise func-
tions to model uncertainty in forecasting data, depicted in
Figure 1b. Noise is added to each trader’s value estimate
E(V ) when executing Algorithm 1, drawn randomly from a
normal distribution. In particular, line 1 of Algorithm 1 is
replaced by pv ← E(V |Fj , k) + N (0, σ), with sigma given
as in Figure 1b. In the case of fixed noise, each trader ex-
periences the same level of uncertainty. More realistically,
the uncertainty increases with the amount of forecasting, es-
pecially when e.g. step-by-step prediction is used [4]. This
inspires the exponential noise function. Again, a linear func-
tion is used as well as compromise between these two.

4. SIMULATIONS OF A STATIC MARKET
Two types of experiments are conducted to highlight the

effect of both cost and noise on the relative return for the
different trading algorithms. First, in this section the distri-
bution of trading algorithms in the market is kept fixed, al-
lowing us to investigate the market returns given the various
cost and noise scenarios. Moreover, we take a detailed look
at some of the characteristics of the resulting price series.
Next, in Section 5, traders are allowed to switch their strat-
egy if this is profitable. Evolutionary analysis of the result-
ing dynamical system indicates which strategy is strongest
from a natural selection point of view. Moreover, this analy-
sis shows how the market evolves, and which strategy or set
of strategies are economically viable in the long run under
different scenarios.

4.1 When is Charting Profitable?
We will now investigate the role of chartists in the market.

In particular, we are interested in the viability of the chartist
strategy in a market that is essentially dictated by a random
process (the dividend stream). After all, chartists rely solely
on the presence of trends in the market price. We simu-
late a market with four types of traders: zero-information
(ZI), fundamentalist with information levels 3 and 9 (F3 and
F9), and chartists (C); 10 traders are used for each strat-
egy. Again, we consider different scenarios using the cost
and noise functions of Figures 1a and 1b, and evaluate the
relative return for each trading strategy, averaged over 100
sessions of 100 runs each.
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Figure 2: Relative returns for a market with a mix of trad-
ing strategies; n = 40, where 10 traders use each strategy.

The results are presented in Figure 2. Without noise and
cost, we see that only highly informed fundamentalists (F9)
perform above market average, whereas in particular the
averagely informed traders (F3) lose out. Zero-information
traders and chartists perform around the market average.
This effect has been observed before, both in simulation
and in human experiments [11, 12, 20]. The addition of
cost has an equalising effect on the traders’ performance
(Figure 2a). As fundamentalists get increasingly charged,
zero-information traders and chartists can both profit. The
reason is that, as argued before, costs are only subtracted at
the end of each trading period, and as such they do not in-
fluence the price dynamics of the market. In contrast, noise
affects the price dynamics of the market through the fun-
damentalists’ trading behaviour, indirectly influencing the
performance of chartists as well (Figure 2b). In this case,
increasing noise levels cause the market to be even less pre-
dictable, as short-term trends caused by the fundamental-
ists’ foresight knowledge are scrambled. This causes a sig-
nificant decrease in the chartists’ performance. Finally, the
combination of cost and noise causes their effects to add up
(Figure 2c). The combination of linear noise with either
linear or quadratic costs (the left two panels) leads to a sit-
uation where zero-information traders achieve the highest
performance; in the other cases averagely informed traders
do best.

It is clear from these results that both cost and noise can
have a large influence on the relative performance of various
trading strategies. We analyse these effects in more detail in
Section 5, where we apply an evolutionary model to study
the dynamics of a market in which traders may switch to
more profitable strategies. As such, we can analyse which
set of strategies is in equilibrium, and which strategies will
die out in the long run under evolutionary pressure.

Table 1: Descriptive statistics for the time series of returns
generated by the market model, compared to real-world data
of the S&P500 index.

Data Skewness Kurtosis
S&P500 index futures -0.40 15.95
Market without chartists -0.45 20.47
Market with chartists -0.44 24.57

4.2 Checking for Stylised Facts
Time series data of many real-world financial assets share

a set of common stylised statistical facts [5]. In particular,
the distribution of returns is characterised by a heavy tail;
there is no significant autocorrelation of returns except for
very small (intra-day) time scales; and large price fluctu-
ations tend to be grouped together (volatility clustering).
In the following, we check the price series generated by our
market model for these stylised facts, focusing in particular
on the effect that chartists may have on these measures.

We analyse the price signal resulting from one individual
run of the market, both with and without chartists, using
the same dividend stream for both scenarios.1 Specifically,
we record the realised prices at every buy and sell action,
yielding 4526 price points for the market without chartists,
and 5980 price points for the market including chartists.
From these data we obtain the log return series r as

r(i) =
log(Pi+1)− log(Pi)

∆ti→i+1

where Pi is the ith realised price, and ∆ti→i+1 represents the
time difference between two consecutive price realisations.
Visual inspection indicates that the distribution of returns
resembles a normal distribution, but has a thinner body and
bigger tails. In order to verify this, we compute the skewness
and kurtosis of the returns. The skewness measures the anti-
symmetry in the distribution of a random variable x as

γ =
E
[
(x− µ)3

]
σ3

A skewness of 0 means that the data is perfectly symmetrical
around its mean. The kurtosis describes the ‘peakedness’ of
the distribution, computed as

κ =
E
[
(x− µ)4

]
σ4

− 3

where a positive value of κ indicates a heavy tailed distri-
bution; in particular, a normal distribution has κ = 0. We
compare these statistics to those of the S&P500 index fu-
tures as reported by [5], in Table 1. The data shows that
the distribution of returns generated by our market model
is indeed characterised by a heavy tail.

Finally, we look at the autocorrelation of the returns. The
lack of significant linear correlations in asset returns has
been widely studied for many years [5, 7]. It can be argued
that this is a self-correcting property of any market, since
the existence of any dependencies in price series would be
exploited by some traders, who by that act effectively erase
those dependencies [6]. Moreover, a negative autocorrelation
of the return series of consecutive transaction prices may be

1Similar results are obtained for different dividend streams
and simulation trials.
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Figure 3: Autocorrelation of returns (solid line) and
squared returns (dashed line). The straight lines indicate
the confidence bounds.

observed, caused by the alternation between buy and sell ac-
tions close to ask and bid prices, respectively [5]. Addition-
ally, the autocorrelation of squared returns is a quantitative
signature of volatility clustering: the idea that large price
variations are often followed by large price variations [5].

The autocorrelation of a discrete time series is measured at
different lags τ , indicating the time difference between sam-
ples for which the correlation is tested [3]. Figure 3 shows
the autocorrelation of returns and squared returns for the
market with and without chartists. Without chartists, both
measures diminish quickly. When chartists are present, on
the other hand, the autocorrelation of squared returns di-
minishes slowly, indicating some volatility clustering in this
case. Therefore, the presence of more diverse trading strate-
gies seems to yield more realistic price dynamics. However,
note that these findings are based on a single scenario –
more extensive analysis is required to make a strong claim.
In sum, the market model generates price series that exhibit
several stylised facts of real-world financial time series data,
supporting the validity of our model.

5. EVOLUTIONARY DYNAMICS
So far, traders have not been able to choose their strat-

egy. Instead, the distribution over trading strategies was
kept fixed throughout the simulation. Realistically it can
be assumed that traders may be inclined to switch strategy
if they are currently performing poorly. In the following we
look at the dynamics of a market in which traders are free to
change their strategy at any time. Based on the replicator
dynamics of evolutionary game theory we visually inspect
the dynamics of such markets. This analysis gives insight
into the evolutionary strength of various trading strategies,
and the fixed points of the dynamics predict the distribu-
tion of trading strategies that may be found in a market in
equilibrium.

5.1 Visual Inspection
Experiments in Section 4 revealed that chartists only stand

a chance when little or no noise is present in the market; in
any other case they are outperformed by all other trading
strategies. Therefore, we focus our evolutionary analysis on
the cost scenarios only, as these provide the most interesting
point of analysis. We simulate a market with four trading
strategies: zero-information (ZI), fundamentalists of types
F3 and F9, and chartists (C). We follow the procedure de-
scribed in Section 2.3 to compute a heuristic payoff table,
using 24 traders, distributed over those four strategies. This

yields 2925 different discrete permutations in the heuristic
payoff table.2 For each permutation, the relative perfor-
mance of the involved strategies is estimated by simulating
the market for 100 sessions of 10 runs each.

As we have four strategies, visual inspection of the result-
ing dynamics in the four-dimensional simplex is not straight-
forward. However, we can get some insights by looking at
the different faces of the simplex, which represent those
scenarios in which one strategy is absent. Figure 4 shows
the four different faces of the simplex, corresponding to the
strategy sets {ZI, F3, F9}, {ZI, F3, C}, {ZI, F9, C}, and {F3,
F9, C}, for the four different cost scenarios. When no costs
are incurred (Figure 4a), both chartists and zero-information
traders are consistently outperformed by fundamentalists, in
line with findings reported above. Interesting however is the
mixed equilibrium that appears where F3 and F9 traders co-
exist. When fixed costs apply (Figure 4b), this mixed equi-
librium becomes unstable; instead a stable attractor appears
where chartists and highly informed fundamentalists prevail.
Averagely informed traders (F3) incur relatively large costs
in this scenario, and are driven out of the market.

The linear and quadratic cost functions yield the most
complex dynamics, where all faces of the simplex are qual-
itatively different, as shown in Figures 4c and 4d. Of par-
ticular interest is the striking similarity between the third
and fourth panel of both cost scenarios, corresponding to
the strategy sets {ZI, F9, C} and {F3, F9, C}. In fact,
the face {ZI, F9, C} is identical under linear and quadratic
costs, as the cost for F9 traders is the same under both func-
tions. Most importantly, chartists can survive in the market
in each cost scenario, with the exception of the {ZI, F3, C}
face under quadratic costs, where the averagely informed
fundamentalists perform best. In general, however, it can
be concluded that the trading behaviour of fundamentalists
indirectly reveals their foresight knowledge through the mar-
ket price, and chartists are able to profit without having to
pay the price.

5.2 Numerical Analysis of Stable Attractors
Although informative in many ways, looking only at the

faces of the simplex does not reveal the dynamics of the full
mix of strategies. The linear and quadratic cost cases in par-
ticular warrant further investigation, as each face of their
corresponding simplex shows a mixed equilibrium. This
raises the question whether a fully mixed internal equilib-
rium, where each strategy prevails, is present as well. Al-
though visual inspection is difficult, we can locate attracting
equilibria numerically by following traces of the dynamical
model, starting from different points in the strategy space.
This can be done systematically by selecting the starting
points from a four-dimensional uniform grid. Specifically,
we select each point x = (x1, x2, x3, x4) such that the in-
dividual components xi ∈ {0.1, 0.2, . . . , 0.9}, constrained by∑

i xi = 1 to ensure a valid probability distribution. The
results are reported in Table 2.

As anticipated, the linear and quadratic cost scenarios in-
deed give rise to an internal equilibrium where all four trad-
ing strategies prevail. Moreover, in the case of quadratic
costs the averagely informed traders (F3) do slightly better
than under linear costs, whereas chartists do worse. This

2Increasing this number does not change the results signifi-
cantly – 24 traders are sufficient to capture all relevant dy-
namics.
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Figure 4: Vector fields showing different faces of the four-dimensional simplex for a market with four trading strategies, and
different cost functions. Stable attractors are indicated with and unstable attractors with .

Table 2: Stable equilibria of the four-dimensional simplex.

Cost function Equilibrium
( ZI, F3, F9, C )

No cost (0.00, 0.07, 0.93, 0.00)
Fixed cost (0.27, 0.00, 0.39, 0.34)
Linear cost (0.36, 0.10, 0.21, 0.33)
Quadratic cost (0.35, 0.15, 0.22, 0.28)

finding agrees with the second panel of Figures 4c and 4d,
which shows the changing balance between F3 and C in di-
rect comparison. In the fixed cost scenario, the F3 strategy
dies out in equilibrium, as these traders are disproportion-
ately taxed for their knowledge. Finally, without any cost,
both chartists and zero-information traders disappear. Sur-
prisingly, a small fraction of less-informed F3 traders re-

mains; further research is required to determine whether
this is an artifact of the heuristic payoff table, as very little
information is available close to the corner points.

6. CONCLUSIONS
In this paper we have employed the evolutionary model of

replicator dynamics to analyse the complex strategic inter-
actions of stock market trading. We use an agent-based mar-
ket model, which includes three different trading strategies:
zero-information traders, fundamentalists, and chartists. We
investigate the effectiveness of these strategies in our mar-
ket model, and find that fundamentalists consistently beat
the market when information is freely available. More real-
istically, acquiring fundamental information takes time and
effort, which should be taken into account. We find that
when information comes at a price, zero-information traders
and chartists can survive, leading to a market equilibrium



where each trading strategy is present. In such scenarios,
chartists can profit from the information that is present in
the market price due to fundamentalists’ trading behaviour,
without having to pay the price. We check the resulting
market prices for stylised facts of real-world financial time
series, and find that our market model indeed yields realistic
price series, which exhibit a fat tailed returns distribution,
lack of autocorrelation of returns, and volatility clustering.

Our findings highlight the limits of fundamental trading,
and show that it is possible for chartists to survive in the
market. We observe a variety of outcomes depending on
whether or not cost and noise are a driving factor of the
market. This shows that a good understanding of the under-
lying dynamics are vital if any reasonable predictions about
market outcomes are to be made.

Many interesting directions for future research can be
identified. Taking a microscopic look at the trading ac-
tions in the market equilibrium may give insights to the
strengths and weaknesses of the different trading strategies.
For example, one might investigate when traders make or
lose most of their money, by comparing limit orders and mar-
ket orders for the different trading strategies, as done by e.g.
Stöckl and Kirchler [18] for a market with only fundamental
traders. Additionally, the market model can be extended to
include various assets, which may yield more complex dy-
namics. Also, markets do not typically consist of a fixed set
of traders. Instead, traders may continuously enter and exit
the market, potentially shifting the equilibrium. This may
similarly yield more complex dynamics, which may further
help to explain the diverse set of traders usually found in
real-world stock markets. Finally, comparing the evolution-
ary dynamics of strategy change against the behaviour of
real traders would further validate our model.
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[20] B. Tóth and E. Scalas. The value of information in
financial markets: An agent-based simulation. In
J. Huber and M. Hanke, editors, Information,
Interaction, and (In)Efficiency in Financial Markets.
Linde Verlag, 2007.
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