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The aim of the talk

Provide a non-exhaustive overview of techniques that
can be used to help an RL agent learn taster



Part |: Reinforcement
L earning

Learn from interaction with the environment
Feedback is provided through a reward signal
* Think of a dog trainer’s cookies

The agent should learn behaviour that results in the
most reward collected



Reinforcement Learning

,,[ Agent

reward action
-
! a,

state

s | Environment

» Markov Decision Process MDP M (S, A, T, R)

 State space S, Action space A
e State transition probabilities T': S x A x S — R

e Areward function R: S x A xS —= R



Reinforcement Learning

 Goal: learn a policyr: S x A — R that, given a
state, assigns to each possible action a selection
probabillity such that the expected, accumulated,
discounted reward is maximised

J"=F thR(st,at,stH)
=0

e The value of an action in a certain state is
expressed using the Q-function

Q" (s,a) = Fx {ZWtR(St,at, St+1)|50 = s, a0 = a}

t=0



RL Sample Complexity

 We want to learn such a policy with as little
experiences (samples) in the environment as
possible, since these may be costly

« Many RL technigues take a tabula rasa approach,
resulting in fully random exploration initially

e (Given an often sparse reward signal (e.g., only
positive feedback at the goal), the more complex
the task, the longer learning takes (more samples
are needed)



1The solution

Bias the agent’s otherwise purely random exploration
using external/prior knowledge



1The solution

Expert knowledge

* Reward shaping

Learning from demonstration
Transfer learning

Agents/Humans teaching Agents



Part |I: Expert knowledge

Rules of thumb derived from intuitions of a domain
expert



Part |I: Expert knowledge

« Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward
transformations: Theory and application to reward shaping. [CML
 Wiewiora, E., Cottrell, G., and Elkan, C. (2003). Principled methods for
advising reinforcement learning agents. ICML.

e Harutyunyan, A., Devlin, S., Vrancx, P., & Noweg, A. (2015). Expressing
Arbitrary Reward Functions as Potential-Based Advice. AAA

 Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., & Nowe, A. (2014). Multi-
Objectivization of Reinforcement Learning Problems by Reward Shaping.
IJCNN

 Brys, T., Nowé, A., Kudenko, D., & Taylor, M.E. (2014). Combining Multiple
Correlated Reward and Shaping Signals by Measuring Confidence. AAAI
e Harutyunyan, A., Brys, T., Vrancx, P., & Nowé, A. (2015). Multi-Scale
Reward Shaping via an Off-Policy Ensemble. AAMAS

o Grzes, M., & Kudenko, D. (2010). Online learning of shaping rewards in
reinforcement learning. Neural Networks, 23(4), 541-550.



Reward Shaping

Ng, A. Y., Harada, D., & Russell, S.
(1999). Policy invariance under
reward transformations: Theory and
application to reward shaping. ICML

 Way to incorporate heuristic knowledge to speed

up learning RS R+ F

e |f potential-based, guaranteed to preserve total
order over solutions

F(s,8") =~v®(s") — ®(s)



Cart Pole




Shaping in Cart Pole
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Reward Shaping

Wiewiora, E., Cottrell, G., and Elkan,
C. (2003). Principled methods for
advising reinforcement learning
agents. ICML.

 Shape over states and actions
* Encourage certain behaviour

* Also guaranteed to preserve total order over
solutions

F(s,a,s,a") =~®(s',a") — ®(s,a)



Shaping in Cart Pole
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Unexpected eftects of
shaping

Assume ®(s,a) = 1 and zero elsewhere
Then &(s',a’) — ®(s,a) = —1

The desirable behaviour (s, a) is effectively
discouraged

Setting potentials s.t. the desired effect is achieved
s difficult



Arbitrary Reward as
Potential- Based Shaping

Harutyunyan, A., Devlin, S., Vrancx,
P., & Nowe, A. (2015) Expressmg
Arbitrary Reward Functions as
Potential-Based Advice. AAAI

* Instead of defining a potential function ®(s, a),
define a reward function R, so that the actual

shaping reward F ~ RT
 Learn a second Q-function Q' based on R

* Use those Q-values to shape the main reward
function ®(s,a) = Q' (s, a)



Arbitrary Reward as
Potential-Based Shaping




Shaping in Cart Pole
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Shaping’s hidden
tuning problem

* |[n most papers, lots of pre-tuning
* Which information to incorporate

 Parameterization of the shaping (scaling)



Shaping’s hidden
tuning problem

* |nstead of wasting a lot of samples during tuning to

create a single best shaping, create lots of
shapings based on different heuristics and

differently parameterised

e Use them in an ensemble



Multi-Objectivization by
Reward Shapmg

Brys, T., Harutyunyan, A., Vrancx, P.,
Taylor, M E., & Nowé, A. (2014)
Multi-Objectivization of
Reinforcement Learning Problems
by Reward Shaping. [JCNN

e Transform MDP into MOMDP

MDP M (S, A, T, R) — MOMDP M'(S, A, T, R)

* Add different potential-based reward shaping to each copy of
the original reward R — [R+ Fy. R+ F, R+ F ]
T Y, > n

* We prove that this formulation yields a multi-objective
poroblem with a total order over the solutions



EFnsembles In RL

Wiering, M. A., & van Hasselt, H. (2008).
Ensemble algorithms in reinforcement
learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part B:
Cybernetics, 38(4), 930-936.

 Ensemble decision (for n decision makers):

arg max Z w;pi(s,a)
1



Confidence Ensemble
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Shaping Selection In
State Space

Proximity Trapping Separation



Choice of Heuristic and
Scallng

Harutyunyan, A., Brys, T., Vrancx, P., & g

Nowé, A. (2015). Multi-Scale Reward ‘
Shaping via an Off-Policy Ensemble. .‘
AAMAS LWk

* For each heuristic, include multiple differently
scaled versions in the ensemble



L earning the Shaping
On-line

Grzes, M., & Kudenko, D. (2010). Online
learning of shaping rewards in reinforcement
learning. Neural Networks, 23(4), 541-550.

* Best shaping function is the value-tunction

 Learn in parallel on a fine- and coarse grained
representation

* Shape the fine-grained values with the coarse
grained ones



Part |ll: Learning from
Demonstration

Using (human) demonstrations of a task to learn a
policy



Part |ll: Learning from
Demonstration

Background: Argall, B. D., Chernova, S., Veloso, M., & Browning,
B3. (2009). A survey of robot learning from demonstration.
Robotics and autonomous systems, 57(5), 469-483.

Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement
learning for mobile robots. ICRA

Taylor, M. E., Suay, H. B., & Chernova, S. (2011). Integrating
reinforcement learning with human demonstrations of varying
ability. AAMAS

Brys, T., Harutyunyan A., Suay, H. B., Chernova, S., Taylor, M. E.
& Nowé, A, (2015). Reinforcement Learning from Demonstration
through Shaping. [JCAI



L earning from
Demonstration History

1980

1990

2000

Programming by
Demonstration
* Demonstration play-back

* No generalization
e Sensitive to noise and
variability




L earning from
Demonstration History

Programming by
Demonstration
Generalization over
multiple demonstrations

* Symbolic abstraction

(e.g., “close-to”, “above”)
* Hand-coded parameters




L earning from
Demonstration History

Generalization over
multiple demonstrations

1990

2000

Programming by
Demonstration

Use of Machine Learning to
analyze demonstrations

* Generalization to novel
states

* Improved demonstration
interfaces
* Biologically inspired learning



| earning from
Demonstration

Argall, B. D., Chernova, S., Veloso, M., & y &
Browning, B. (2009). A survey of robot & = B
learning from demonstration. Robotics i

and autonomous systems, 57(5), 469-483. S

* (Generate a policy solely based on demonstrations by
abstracting and generalising them

* Demonstrations may

* be suboptimal

* not cover the whole state space



| earning from
Demonstration

Argall, Browning & Veloso

Lockerd & Breazeal



Reinforcement Learning
from Demonstration

* Use demonstrations to speed up/kickstart a reinforcement
learning process

* Relying on the ground truth (reward) for learning and using
demonstrations as heuristic bias

 Advantages
* Theoretical guarantees of RL
e Suboptimality of demonstrations is less a problem

* High sample complexity of RL is overcome



Two-Stage RLID

Smart, W. D., & Kaelbling, L. P. (2002).
Effective reinforcement learning for
mobile robots. ICRA

* 1st stage: robot passively watches human
demonstrator and learns from observed (s,a,r,s’)

e 2nd stage: robot actively controls the system and
continues learning



Two-Stage RLID

. Steps to Goal
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Taylor, M. E., Suay, H. B., & Chernova, S.
(2011). Integrating reinforcement
learning with human demonstrations of
varying ability. AAMAS

« Human-Agent Transter

e Based on a set of demonstrations in a task, use a
standard LfD technigue to generate a policy for that task

 “Transfer” this policy to the RL agent, and let it use that
policy to bias its learning
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Brys, T., Harutyunyan A_, Suay, H. B.,
Chernova, S., Taylor, M. E. & Nowé, A,
(2015). Reinforcement Learning from
Demonstration through Shaping. IJCAI

 Encode demonstrations as a reward shaping function

* Place a Gaussian everywhere a state-action pair has been
demonstrated

» Potential is high when close by (in the state space) the same action
has been demonstrated



RLID through Shaping

128 demonstration samples in Cart Pole
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RLID through Shaping

Varying demonstration length in Cart Pole
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Part IV: Transfer Learning

Background: Matthew E. Taylor and Peter Stone. Transfer Learning for
Reinforcement Learning Domains: A Survey. Journal of Machine Learning
Research, 10(1):1633-1685, 2009

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-
task learning for policy gradient methods. ICML-14

Anestis Fachantidis, loannis Partalas, Matthew E. Taylor. and loannis Vlahavas.
Transfer learning with probabilistic mapping selection. Adaptive Behavior, 23(1):
3-19, 2015

George Konidaris and Andrew Barto. Autonomous shaping: knowledge transfer in
reinforcement learning. ICML-06

Alessandro Lazaric , Marcello Restelli, Andrea Bonarini. Transfer of samples in
batch reinforcement learning. ICML-08

Paul Ruvolo and Eric Eaton. ELLA: an efficient lifelong learning algorithm. ICML-13

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. Transferring instances for
model-based reinforcement learning. ECML-08

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer Learning via Inter-Task
Mappings for Temporal Difference Learning. Journal of Machine Learning
Research, 8(1):2125-2167, 2007



Value Function Transfer

p(Q(S,A)) = Q'(SA')

Environment p is task-dependant:
relies on inter-task mappings

Reward

Environment

EVEC

Taylor+, JMLR 2007



Autonomous Shaping: Knowledge Transfer in
Reinforcement Learning, Konidaris & Barto, 2006

Problem-Space: individual tasks
Agent-Space: constant across tasks

Example: heat sensor on robot, task = find heat
source

Shaping reward over states (e.g., V, not Q)



Example

Source Tasks Target Task /Goal
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Transfer of Samples in Batch

Reinforcement Learning, Lazaric+, 2008

Multi-task setting

Instance-based method

Compliance: find most similar source task

Relevance: find the most useful source task instances
* Ordered by similarity in afterstates

* “The assumption underlying the definition of
relevance is that, whenever there is no evidence
against the transfer of a sample, it is convenient to
transfer it to the target task.”



Kernel-based
sources Model
Approximation

target : I

compliance relevance

transfer of
samples




Inter-Task Mappings

Xx: Starget =4 Ssource
* Given state / state variable in target task

* Return corresponding state / state variable in source task

XA: atarget 9 asource
e Similar, but for actions

Intuitive mappings exist in some domains (Oracle)
Used to construct p

Source Target
XX 9
S+= S
A" A

QP+




Transferring Instances for Model-Based|
REinforcement lesnmiing, Tl bom, 20008

TIMBREL

Leverages Fitted R-Max (Jong & Stone, 2007)

n. An ancient

percussion instrument
Instance-based method similar to a tambourine

Assumes you know the (correct) inter-task mapping



TIMBREL

if target task model (T or R) is poor

Use inter-task mapping to find closest source task instances most similar to s

Use transformed instances to estimate target task Tand R

Target

target

/




TIMBREL

if target task model (T or R) is poor
Use inter-task mapping to find closest source task instances most similar to s
Use transformed instances to estimate target task Tand R

target

Target Source




TIMBREL

if target task model (T or R) is poor

Use inter-task mapping to find closest source task instances most similar to s

Use transformed instances to estimate target task Tand R

Target

Source

target

/




COMBREL

* Translate multiple mapping problem to multi-task
transfer problem

— Each inter-task mapping is a hypothesis

— Consider multiple mappings to transform single
source task to multiple virtual source tasks

— Compliance!

 Automated method to select state and action
mappings
— Can be state-dependent (in target task)

Transfer Learning with Probabilistic Mapping Selection, Fachantidis+, Adaptive Behavior, 2015



COMBREL

Compliance aware transfer for Model-Based
REinforcement Learning

if target task model (T or R) is poor for current s,,. ..., Oygrger

Calc average compliance of k-nearest target task instances to each virtual source task

Select most compliant source task

if using relevance:
Compute relevance of each source task instance to s
Add most relevant to samples current model

else
Use Euclidian distance to target task instance (TIMBREL method)

sources Kernel-based
Model

a

target’ Ytarget

Tar qel o Approximation .
/ target

. Q

@ RPN

: QD

transfer of
samples

compliance relevance



e 2D Mountain Car = 4D Mountain Car
e 1000 source task instances, 1960 mappings

-300
320+ A 2 -
AR (&) A'}i‘ 260 . M %@ =0 ) o
u”“ 9'0"’ ) & & G?é;)\é% Io b’Q Ew’% @ @Qgeea & - - -
_340_ o -cr,h .-‘..,'-,A,,‘-‘?"..'..“ 7 Tt '"'"\"“..”".“"H"u"."..'.:'-“”.'“-"'“\"”“”._4
i :'- .‘ 8 \.‘. P ' :'.."_ et *
_aeol BT W ok Wx R oo T oot
? & . K
-380} g0
o %
2 400}
o
—4201
-440- ¥
f COMBREL without relevance —+—
—460F | COMBREL with relevance —--¢-—-
TIMBREL ---------
—a80}- é No Transfer ----%----
-500 ~.“"' 1 ] ] ] 1 1 ] ] ]
0 20 40 60 80 100 120 140 160 180 200
Episodes

Multiple mappings better than 1 ‘best” mapping



e 2D Mountain Car = 4D Mountain Car
e Use 1960 mappings: create one instance “pool”
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Compliance does improve performance




iICub: Ball hitting task

e 2 or 4 degrees of freedom

* 1152 mappings (24 state mappings, 48 action
mappings)




ELLA, Ruvolo & Eaton, 2013
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Y

previously learned tasks current

task future learning tasks
1.) Tasks are received
) labeled data
sequentially ; X0, 40

3.) New

: knowledge
2.) Knowledge is learned model f, is stored for
transferred from future use

previously

learned tasks 4.) Existing

knowledge
is refined

Lifelong Learning System

ELLA: Supervised learning, equivalent accuracy to batch multi-task
learning, over 1,000x faster and can learn online




PG-ELLA: Bou Aamar+, 2014




Standard PG vs PG-ELLA: Cart-Pole

PG-ELLA Standard PG




Related Work at AAMAS-15



Learning in Multi-agent Systems with Sparse Interactions by
Knowledge Transfer and Game Abstraction
Yujing Hu, Yang Gao, Bo An

Question: How to utilize agents’ single-agent knowledge learnt
before when they are learning in a MAS with sparse interactions?

Three Knowledge Transfer Mechanisms

Value function transfer (VFT):
Transferring agents’ local value function directly since the

interactions between agents are sparse

(Selective value function transfer (SVFT): N

Single-agent 1. Transferring value function only in states where agents can

knowledge?? act independently
2. MDP similarity based on Kantorovich metric is defined to

\determine whether to transfer the value function in each state Y,

Model transfer-based game abstraction (MTGA):
1. Transferring reward and transition models

2. Reducing the joint state-action space of the learning
algorithm based on MDP similarity

Learning II, G3, 11:00 — 12:30 on Thursday, 7" May, Uskidar 1



Learning Inter-Task Transferability in the Absence of
Target Task Samples

Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, Peter Stone
University of Texas at Austin

e Can an agent learn to predict the benefit
of transferring a policy from one task to
another?

e Short answer: yes!

e Using the learned model, the agent was
able to select good source task that
improved learning on target tasks

Learning II, G3, 11:00 — 12:30 on Thursday, 7" May, Uskidar 1



Policy Transfer using Reward Shaping
Tim Brys, Anna Harutyunyan, Matthew E. Taylor, Ann Nowé

Transfer policy from similar task

 RL, LfD, Human defined, ...

Black box: can only query 1t(s,a)

Encode source as dynamic shaping reward
e Strong theoretical guarantees

* More robust to suboptimal policies than
state-of-the-art

e Mountain Car, Cart Pole, Mario

e ey
)! w

Learning I, B3, 11:00 — 12:30 on Wednesday, 6! May, Uskiidar 1






Part V: Agents Teaching Agents

 Matthew E. Taylor, Nicholas Carboni, Anestis
Fachantidis, loannis Vlahavas, and Lisa Torrey.
Reinforcement learning agents providing advice
in complex video games. Connection Science,
26(1):45-63, 2014.

* Yusen Zhan, Anestis Fachantidis, loannis
Vlahavas, and Matthew E. Taylor. Agents
Teaching Humans in Reinforcement Learning
Tasks. ALA (at AAMAS), 2014.



Reinforcement Learning Agents Providing
Advice in Complex Video Games

Taylor+, Journal of Connection Science, 2014

* Different state representation
 Different learning methods

* Only action advice

* Limited amounts of advice



Reinforcement Learning + Teaching

teacher

environment

advme

action
reward

student



Why Action Advice?

Transfer learning Teaching via advice
> >
advice
& &
Requirements Requirements
* Direct access * Communication

* High similarity * Minimal similarity



Defining Advice Budget: Ms. Pac-Man

800

Episode length
Up to 2000 steps

Training period
500 episodes

Advice budget
1000 actions

Main question:
How can the teacher spend

its advice budget most
effectively




Proposed solutions

Early advising
Importance advising
Mistake correcting

Predictive advising



Proposed solutions

Early advising

Importance advising

Mistake correcting

Predictive advising

Student training




Proposed solutions

Early advising

Importance advising

Mistake correcting

Predictive advising

Student training

1l
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State importance




State importance

High

J L J L

Teacher knowledge

Q(s,a) = Return from taking action a in state s

Importance metric

I(s)=max  O(s,a)—min, Q(s,a)



In Pac-Man
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Proposed solutions

Early advising

Importance advising

Mistake correcting

Predictive advising

Student training

intent
&
2

advice
if (# intent)



Proposed solutions

Early advising -

Importance advising I]]

Mistake correcting I I I

Predictive advising é . .
advice ‘@

if (£ intent)

o

intent?



Proposed solutions

Early advising

Importance advising

Mistake correcting

Predictive advising




Predicting intent

Observed training data

s —> BMNWVKERSIiEd — a



Agent Variations

* Learning algorithms
— Q-learning
— SARSA

* Feature sets
— Low-asymptote (initial state description)
— High-asymptote (more useful features)



Average (Test) Episode Reward

Same Features, Sarsa

=0=No advice

==Early Advising
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Training Episodes



Same Features, Sarsa

=0=No advice

=@=Early Advising

Importance Advising

Average (Test) Episode Reward

0 200 400 600 800 1000
Training Episodes



Same Features, Sarsa
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e Current Work

— Apply same techniques to teaching humans

— Provide regret bounds depending on teacher’s
abilities

* Future Work
— Multiple teachers
— More differences between agents
— When to ignore teacher
— Definitions of state importance



Agents Teaching Agents

Transfer learning is great, if have full access to source agent

Student learning can be improved with a small advice budget
Advice has greater impact when spent on important states
Advice has greater impact when spent on mistakes

Teachers can improve student learning even when agents
— have different learning algorithms

— state representations

— Can outperform teachers

Mountain Car, Pac-Man, StarCraft



Part VI: Humans Teaching Agents

Gabriel V. de la Cruz Jr., Bei Peng, Walter S. Lasecki, and Matthew E. Taylor.
Towards Integrating Real-Time Crowd Advice with Reinforcement Learning. IUI-15.

W. Bradley Knox and Peter Stone. Reinforcement Learning from Simultaneous
Human and MDP Reward. AAMAS-12.

W. Bradley Knox and Peter Stone. Combining Manual Feedback with Subsequent
MDP Reward Signals for Reinforcement Learning. AAMAS-10.

W. Bradley Knox and Peter Stone. Interactively Shaping Agents via Human
Reinforcement: The TAMER Framework. KCAP-09.

W. Bradley Knox, Matthew Taylor, and Peter Stone. Understanding Human
Teaching Modalities in Reinforcement Learning Environments: A Preliminary
Report. ALIGHT workshop (at IJCAI-11).

Robert Loftin, Bei Peng, James MacGlashan, Michael L. Littman, Matthew E. Taylor,
Jeff Huang, and David L. Roberts. Learning behaviors via human-delivered discrete

feedback: modeling implicit feedback strategies to speed up learning. Journal of
Autonomous Agents and Multi-Agent Systems, pages 1-30, 2015.

Robert Loftin, Bei Peng, James MacGlashan, Michael Littman, Matthew E. Taylor,
David Roberts, and Jeff Huang. Learning Something from Nothing: Leveraging
Implicit Human Feedback Strategies. RO-MAN-14.,

James Macglashan, Michael L. Littman, Robert Loftin, Bei Peng, David Roberts, and
Matthew E. Taylor. Training an Agent to Ground Commands with Reward and
Punishment. AAAI-14.



TAMER

Learning from feedback (interactive shaping)

Knox+, 2008-2013

Key insight: trainer evaluates behavior using a
model of its long-term quality

Learn a model of human reinforcement

H:SxA—-R

Directly exploit the model to determine action
Also, can combine with MDP’s reward



Tetris

During Training  After 2 games of training




a priori comparison

Demonstration more specifically points to the correct action

Interface

* LfD interface may be familiar to video
game players

® LfF interface is simpler and task-
independent

Task expertise

® LfF - easier to judge than to control

®* Easier for human to increase expertise
while training with LfD

Cognitive load
* Less for LfF




Bayesian Inference Approach

* Here, feedback is categorical

* Use Bayesian approach

— Find maximum a posteriori (MAP) estimate of target
behavior

* Learning behaviors via human-delivered discrete
feedback: modeling implicit feedback strategies to
speed up learning, Loftin+, JAAMAS-15



Goal

Human can give positive or negative feedback
Agent tries to learn policy A *
Maps observations to actions

For now: think contextual bandit



Example: Dog Training

* Teach dog to sit & shake

_—

e

AT
Ly h ,‘\

“Sit” >
\*—

“Shake” >

N~—

 Mapping from observations to actions
* Feedback: {Bad Dog, Good Boy}



History in Dog Training
Feedback history h
e Observation: “sit”, Action: “* Feedback: “Bad Dog”

wn . ¥ “ ”
* Observation: “sit”, Action: ' Feedback: “Good Boy

Really make sense to assign numeric rewards to these?



Bayesian Framework

* Trainer desires policy A *
* h,is the training history at time ¢
* Find MAP hypothesis of A*:

argmax p(A* = A|hy) = argmax p(ht|A* = A\)p(A* = )
A A

Model of training process  Prior distribution over policies



Assumed trainer behavior

* Decide if action is correct
— Does A*(o)=a ? Trainer makes an error with p(e)

e Decide if should give feedback

— u™, u are probabilities of neutral feedback
— If thinks correct, give positive feedback with p(1- u™)
— If thinks incorrect, give negative feedback with p(I- u’)

* Could depend on trainer



Feedback Probabilities

Probability of feedback /, at time ¢ is:

p(lf - l+|0t,at,)\*) =
p(lt - l0|0t,at,/\*) = 3

p(ly =17 |og, ap, A*) = 3

(1—e)(1—p™) /\*(Ot) =
| e(l—pT) A" (o) #
(1= e)p™ +eu” 7/\*(0t) = ay
et + (L= X*(or) # a
[ e(1—p) ;A" (0r) = ay

*

)
(1= —p) (o) # ar



Inferring Neutral

Try tolearn u™ and u
Don’t assume they’re equal

Many trainers don’t use punishment

— Neutral feedback could be punishment

Some don’t use reward

— Neutral feedback could be reward




EM step

1 1
Ai+1 = argmax / / p(u™, p” [y Xi) Inp(h, 5™, ™ [N)dp™ dp™
0 0

AeP

Where 4. is ith estimate of maximum likelihood hypothesis
Can simplify this (eventually) to:

Ni+1(0) = argmax(a(po.a — No.a) + BUo.a)
acA

o has to do with the value of neutral feedback (relative to |f|)

[ is negative when neutral implies punishment and positive when
implies reward



User Study

BEGIN TRAINING

LEARNING COMPLETE

Once a rat reaches the comn field, it will disappear




Comparisons

* SIm-TAMER
— Numerical reward function
— Zero ighored
— No delay assumed

* SIim-COBOT
— Similar to Sim-TAMER

— Doesn’t ignore zero rewards



Comparison of success rates in the first user study
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Categorical Feedback outperforms Numeric Feedback




% of participants reaching criterion

Comparison of success rates in the second user study

100 i I
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Leveraging Neutral Improves Performance




Mechanical Turk Studies

Alternative Sprites:
For our third study we posted
three Human Intelligence Tasks to
Amazon Mechanical Turk.

The Dog/Rat sprites, and three

other sprite pairs (right) were
used.

A total 211 users participated in

the Mechanical Turk studies.

Users were paid $0.75 for
participating, with a $0.25bonus
for training performance.



Effects of Agent Appearance

Distribution of strategies used in the Mechanical Turk study when
training agents appearing as a dog, robot, snake or arrow.

Agent Sprite | Target Sprite R+ /P+ R+/P— R-—/P+ R—/P—
dog rat 151(85%) 25(14%) 1(.5%) 1(.5%)
robot battery 188(88%) 21(10%)  0(0%) 4(2%)
snake bird 64(84%) 7(9%) 2(3%) 3(4%)
arrow box 43(83%) 6(11%) 1(2%) 2(4%)
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e Current Work

— Sequential tasks
— Simultaneously learning language model

e Future Work

— How do people want to teach?
— How do people sequence tasks?

— Automated training sequences?



RL + Crowdsourcing

Your Suggestions:

PacMan should have gone left at
4.11s!

$1510 L1 T:668

What action should the player have taken at this point?
i L A

Unlikely to be experts
May not take task seriously
May intentionally act poorly

Towards Integrating Real-Time Crowd Advice with Reinforcement Learning, de |la Cruz+, IUI-15



Crowd can identify “forced errors”

4 Distinct Experiments

Mistake Action
Identification Suggestion

Review

Real-time

5 1340 L'l T:564




Current work: Leveraging Crowd Advice
— Reward Shaping (e.g., Brys+, AAAI-15, AAMAS-15, |JCAI-15)
— Learning from domonstration ideas (e.g., HAT)
— Bias action selection

Future Work
e Collecting the Crowd’s Advice
— Real-time System
— Cyclic review system
— Integrating multiple responses
— Weigh by workers competence
* Generalize to other domains?
* Physical robots?



LfD is great if have expert and lots of time
— How to improve autonomously on few
demonstrations?

What about teaching like dog?
Task sequencing?
Leveraging crowd?



Conclusions

* RLis awesome
* Faster RL is awesomer
 What other ways are there to bias agents

and their exploration?

e
Inteligent
OO0l il d
&@@Wmﬂm@LabOratory irll.eecs.wsu.edu
i eecs.wsu.edu/~taylorm

Tim Brys and Matthew E. Taylor
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