Speeding up a Reinforcement Learning

Tim Brys and Matthew E. Taylor

The aim of the talk

Provide a non-exhaustive overview of techniques that can be used to help an RL agent learn faster

Part I: Reinforcement Learning

- Learn from interaction with the environment
- Feedback is provided through a reward signal
 - Think of a dog trainer's cookies
- The agent should learn behaviour that results in the most reward collected

Reinforcement Learning

- Markov Decision Process MDP M $\langle S, A, T, R \rangle$
 - State space S, Action space A
 - State transition probabilities $T: S \times A \times S \to \mathbb{R}$
 - A reward function $R: S \times A \times S \rightarrow \mathbb{R}$

Reinforcement Learning

• Goal: learn a policy $\pi: S \times A \to \mathbb{R}$ that, given a state, assigns to each possible action a selection probability such that the expected, accumulated, discounted reward is maximised

$$J^{\pi} \equiv E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1})\right]$$

 The value of an action in a certain state is expressed using the Q-function

$$Q^{\pi}(s,a) = E_{\pi} \left\{ \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}, s_{t+1}) | s_{0} = s, a_{0} = a \right\}$$

RL Sample Complexity

- We want to learn such a policy with as little experiences (samples) in the environment as possible, since these may be costly
- Many RL techniques take a tabula rasa approach, resulting in fully random exploration initially
- Given an often sparse reward signal (e.g., only positive feedback at the goal), the more complex the task, the longer learning takes (more samples are needed)

The solution

Bias the agent's otherwise purely random exploration using external/prior knowledge

The solution

- Expert knowledge
 - Reward shaping
- Learning from demonstration
- Transfer learning
- Agents/Humans teaching Agents

Part II: Expert knowledge

Rules of thumb derived from intuitions of a domain expert

Part II: Expert knowledge

- Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory and application to reward shaping. ICML
- Wiewiora, E., Cottrell, G., and Elkan, C. (2003). Principled methods for advising reinforcement learning agents. ICML.
- Harutyunyan, A., Devlin, S., Vrancx, P., & Nowé, A. (2015). Expressing Arbitrary Reward Functions as Potential-Based Advice. AAAI
- Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., & Nowé, A. (2014). Multi-Objectivization of Reinforcement Learning Problems by Reward Shaping. IJCNN
- Brys, T., Nowé, A., Kudenko, D., & Taylor, M.E. (2014). Combining Multiple Correlated Reward and Shaping Signals by Measuring Confidence. AAAI
- Harutyunyan, A., Brys, T., Vrancx, P., & Nowé, A. (2015). Multi-Scale Reward Shaping via an Off-Policy Ensemble. AAMAS
- Grześ, M., & Kudenko, D. (2010). Online learning of shaping rewards in reinforcement learning. Neural Networks, 23(4), 541-550.

Reward Shaping

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory and application to reward shaping. ICML

- Way to incorporate heuristic knowledge to speed up learning $R \to R + F$
- If potential-based, guaranteed to preserve total order over solutions

$$F(s, s') = \gamma \Phi(s') - \Phi(s)$$

Cart Pole

$$S = \{x, \dot{x}, \theta, \dot{\theta}\}$$

Shaping in Cart Pole

Shaping with the angle of the pole $\Phi(s) = -\theta^2$

Reward Shaping

Wiewiora, E., Cottrell, G., and Elkan, C. (2003). Principled methods for advising reinforcement learning agents. ICML.

- Shape over states and actions
- Encourage certain behaviour
- Also guaranteed to preserve total order over solutions

$$F(s, a, s', a') = \gamma \Phi(s', a') - \Phi(s, a)$$

Shaping in Cart Pole

Potential is 1 for moves in the direction the pole is leaning in 0 otherwise

Unexpected effects of shaping

- Assume $\Phi(s,a)=1$ and zero elsewhere
- Then $\Phi(s',a') \Phi(s,a) = -1$
- The desirable behaviour (s,a) is effectively discouraged
- Setting potentials s.t. the desired effect is achieved is difficult

Arbitrary Reward as Potential-Based Shaping

Harutyunyan, A., Devlin, S., Vrancx, P., & Nowé, A. (2015). Expressing Arbitrary Reward Functions as Potential-Based Advice. AAAI

- Instead of defining a potential function $\Phi(s,a)$, define a reward function R^\dagger , so that the actual shaping reward $F\approx R^\dagger$
- Learn a second Q-function Q^{\dagger} based on R^{\dagger}
- Use those Q-values to shape the main reward function $\Phi(s,a)=Q^{\dagger}(s,a)$

Arbitrary Reward as Potential-Based Shaping

Shaping in Cart Pole

Shaping's hidden tuning problem

- In most papers, lots of pre-tuning
 - Which information to incorporate
 - Parameterization of the shaping (scaling)

Shaping's hidden tuning problem

- Instead of wasting a lot of samples during tuning to create a single best shaping, create lots of shapings based on different heuristics and differently parameterised
- Use them in an ensemble

Multi-Objectivization by Reward Shaping

Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., & Nowé, A. (2014). Multi-Objectivization of Reinforcement Learning Problems by Reward Shaping. IJCNN

Transform MDP into MOMDP

MDP M
$$\langle S, A, T, R \rangle \rightarrow \text{MOMDP M'} \langle S, A, T, \mathbf{R} \rangle$$

- Add different potential-based reward shaping to each copy of the original reward $\mathbf{R} = [R + F_0, R + F_1, \dots, R + F_n]$
- We prove that this formulation yields a multi-objective problem with a total order over the solutions

Ensembles in RL

Wiering, M. A., & van Hasselt, H. (2008). Ensemble algorithms in reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(4), 930-936.

Ensemble decision (for n decision makers):

$$\arg\max_{a} \sum_{i}^{n} w_{i} p_{i}(s, a)$$

Confidence Ensemble

Confidence

Brys, T., Nowé, A., Kudenko, D., & Taylor, M.E. (2014). Combining Multiple Correlated Reward and Shaping Signals by Measuring Confidence. AAAI

Shaping Selection in State Space

Choice of Heuristic and Scaling

Harutyunyan, A., Brys, T., Vrancx, P., & Nowé, A. (2015). Multi-Scale Reward Shaping via an Off-Policy Ensemble. AAMAS

 For each heuristic, include multiple differently scaled versions in the ensemble

Learning the Shaping On-line

Grześ, M., & Kudenko, D. (2010). Online learning of shaping rewards in reinforcement learning. Neural Networks, 23(4), 541-550.

- Best shaping function is the value-function
- Learn in parallel on a fine- and coarse grained representation
- Shape the fine-grained values with the coarse grained ones

Part III: Learning from Demonstration

Using (human) demonstrations of a task to learn a policy

Part III: Learning from Demonstration

- Background: Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration.
 Robotics and autonomous systems, 57(5), 469-483.
- Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. ICRA
- Taylor, M. E., Suay, H. B., & Chernova, S. (2011). Integrating reinforcement learning with human demonstrations of varying ability. AAMAS
- Brys, T., Harutyunyan A., Suay, H. B., Chernova, S., Taylor, M. E.
 & Nowé, A, (2015). Reinforcement Learning from Demonstration through Shaping. IJCAI

Learning from Demonstration History

Learning from Demonstration History

1980

Programming by Demonstration

Generalization over multiple demonstrations

- Symbolic abstraction (e.g., "close-to", "above")
- Hand-coded parameters

Learning from Demonstration History

1980

Programming by Demonstration

Generalization over multiple demonstrations

1990

Use of Machine Learning to analyze demonstrations

- Generalization to novel states
- Improved demonstration interfaces
- Biologically inspired learning

2000

Learning from Demonstration

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and autonomous systems, 57(5), 469-483.

- Generate a policy solely based on demonstrations by abstracting and generalising them
- Demonstrations may
 - be suboptimal
 - not cover the whole state space

Learning from Demonstration

Lockerd & Breazeal

Grollman & Jenkins

Nicolescu & Matarić

Argall, Browning & Veloso

Reinforcement Learning from Demonstration

- Use demonstrations to speed up/kickstart a reinforcement learning process
- Relying on the ground truth (reward) for learning and using demonstrations as heuristic bias
- Advantages
 - Theoretical guarantees of RL
 - Suboptimality of demonstrations is less a problem
 - High sample complexity of RL is overcome

Two-Stage RLfD

Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. ICRA

- 1st stage: robot passively watches human demonstrator and learns from observed (s,a,r,s')
- 2nd stage: robot actively controls the system and continues learning

Two-Stage RLfD

HAT

Taylor, M. E., Suay, H. B., & Chernova, S. (2011). Integrating reinforcement learning with human demonstrations of varying ability. AAMAS

- Human-Agent Transfer
- Based on a set of demonstrations in a task, use a standard LfD technique to generate a policy for that task
- "Transfer" this policy to the RL agent, and let it use that policy to bias its learning

HAT

RLfD through Shaping

Brys, T., Harutyunyan A., Suay, H. B., Chernova, S., Taylor, M. E. & Nowé, A, (2015). Reinforcement Learning from Demonstration through Shaping. IJCAI

- Encode demonstrations as a reward shaping function
- Place a Gaussian everywhere a state-action pair has been demonstrated
- Potential is high when close by (in the state space) the same action has been demonstrated

RLfD through Shaping

RLfD through Shaping

Part IV: Transfer Learning

- Background: Matthew E. Taylor and Peter Stone. Transfer Learning for Reinforcement Learning Domains: A Survey. Journal of Machine Learning Research, 10(1):1633-1685, 2009
- Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multitask learning for policy gradient methods. ICML-14
- Anestis Fachantidis, Ioannis Partalas, Matthew E. Taylor. and Ioannis Vlahavas.
 Transfer learning with probabilistic mapping selection. Adaptive Behavior, 23(1): 3-19, 2015
- George Konidaris and Andrew Barto. Autonomous shaping: knowledge transfer in reinforcement learning. ICML-06
- Alessandro Lazaric, Marcello Restelli, Andrea Bonarini. Transfer of samples in batch reinforcement learning. ICML-08
- Paul Ruvolo and Eric Eaton. ELLA: an efficient lifelong learning algorithm. ICML-13
- Matthew E. Taylor, Nicholas K. Jong, and Peter Stone. Transferring instances for model-based reinforcement learning. ECML-08
- Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer Learning via Inter-Task Mappings for Temporal Difference Learning. Journal of Machine Learning Research, 8(1):2125-2167, 2007

Value Function Transfer

Autonomous Shaping: Knowledge Transfer in Reinforcement Learning, Konidaris & Barto, 2006

- Problem-Space: individual tasks
- Agent-Space: constant across tasks
- Example: heat sensor on robot, task = find heat source
- Shaping reward over states (e.g., V, not Q)

Beacons emits separate signals that drop off with square of Euclidean distance

Transfer of Samples in Batch Reinforcement Learning, Lazaric+, 2008

Multi-task setting

Instance-based method

Compliance: find most similar source task

Relevance: find the most useful source task instances

- Ordered by similarity in afterstates
- "The assumption underlying the definition of relevance is that, whenever there is no evidence against the transfer of a sample, it is convenient to transfer it to the target task."

Inter-Task Mappings

- $\chi_{x:} s_{target} \rightarrow s_{source}$
 - Given state / state variable in target task
 - Return corresponding state / state variable in source task
- $\chi_{A:} a_{target} \rightarrow a_{source}$
 - Similar, but for actions
- Intuitive mappings exist in some domains (Oracle)
- Used to construct ρ

Transferring Instances for Model-Based Reinforcement Learning, Taylor+, 20008

TIMBREL

Leverages Fitted R-Max (Jong & Stone, 2007)

Instance-based method

TIME.

n. An ancient percussion instrument similar to a tambourine

Assumes you know the (correct) inter-task mapping

TIMBREL

if target task model (T or R) is poor

Use inter-task mapping to find closest source task instances most similar to s_{target} Use transformed instances to estimate target task T and R

TIMBREL

if target task model (T or R) is poor

Use inter-task mapping to find closest source task instances most similar to s_{target} Use transformed instances to estimate target task T and R

TIMBREL

if target task model (T or R) is poor

Use inter-task mapping to find closest source task instances most similar to s_{target} Use transformed instances to estimate target task T and R

COMBREL

- Translate multiple mapping problem to multi-task transfer problem
 - Each inter-task mapping is a hypothesis
 - Consider multiple mappings to transform single source task to multiple virtual source tasks
 - Compliance!
- Automated method to select state and action mappings
 - Can be state-dependent (in target task)

COMBREL

Compliance aware transfer for Model-Based REinforcement Learning

if target task model (T or R) is poor for current s_{target} , a_{target} Calc average compliance of k-nearest target task instances to each virtual source task Select most compliant source task if using relevance:

Compute relevance of each source task instance to s_{target} , a_{target} Add most relevant to samples current model else

Use Euclidian distance to target task instance (TIMBREL method)

- 2D Mountain Car → 4D Mountain Car
- 1000 source task instances, 1960 mappings

Multiple mappings better than 1 'best' mapping

• 2D Mountain Car → 4D Mountain Car

Use 1960 mappings: create one instance "pool"

Compliance does improve performance

iCub: Ball hitting task

- 2 or 4 degrees of freedom
- 1152 mappings (24 state mappings, 48 action mappings)

ELLA, Ruvolo & Eaton, 2013

ELLA: Supervised learning, equivalent accuracy to batch multi-task learning, over 1,000x faster and can learn online

PG-ELLA: Bou Aamar+, 2014

Standard PG vs PG-ELLA: Cart-Pole Standard PG

Related Work at AAMAS-15

Learning in Multi-agent Systems with Sparse Interactions by Knowledge Transfer and Game Abstraction

Yujing Hu, Yang Gao, Bo An

Question: How to utilize agents' single-agent knowledge learnt before when they are learning in a MAS with sparse interactions?

Single-agent knowledge??

Three Knowledge Transfer Mechanisms

Value function transfer (VFT):

Transferring agents' local value function directly since the interactions between agents are sparse

Selective value function transfer (SVFT):

- 1. Transferring value function only in states where agents can act independently
- 2. MDP similarity based on *Kantorovich metric* is defined to determine whether to transfer the value function in each state

Model transfer-based game abstraction (MTGA):

- 1. Transferring reward and transition models
- 2. Reducing the joint state-action space of the learning algorithm based on MDP similarity

Learning II, G3, 11:00 – 12:30 on Thursday, 7th May, Üsküdar 1

Learning Inter-Task Transferability in the Absence of Target Task Samples

Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, Peter Stone
University of Texas at Austin

- Can an agent learn to predict the benefit of transferring a policy from one task to another?
- Short answer: yes!
- Using the learned model, the agent was able to select good source task that improved learning on target tasks

Learning II, G3, 11:00 – 12:30 on Thursday, 7th May, Üsküdar 1

Policy Transfer using Reward Shaping

Tim Brys, Anna Harutyunyan, Matthew E. Taylor, Ann Nowé

Transfer policy from similar task

- RL, LfD, Human defined, ...
- Black box: can only query π(s,a)
- Encode source as dynamic shaping reward
 - Strong theoretical guarantees

Mountain Car, Cart Pole, Mario

Learning I, B3, 11:00 – 12:30 on Wednesday, 6th May, Üsküdar 1

Part V: Agents Teaching Agents

- Matthew E. Taylor, Nicholas Carboni, Anestis Fachantidis, Ioannis Vlahavas, and Lisa Torrey. Reinforcement learning agents providing advice in complex video games. Connection Science, 26(1):45-63, 2014.
- Yusen Zhan, Anestis Fachantidis, Ioannis Vlahavas, and Matthew E. Taylor. Agents Teaching Humans in Reinforcement Learning Tasks. ALA (at AAMAS), 2014.

Reinforcement Learning Agents Providing Advice in Complex Video Games

Taylor+, Journal of Connection Science, 2014

- Different state representation
- Different learning methods
- Only action advice
- Limited amounts of advice

Reinforcement Learning + Teaching

Why Action Advice?

Transfer learning

Requirements

- Direct access
- High similarity

Teaching via advice

Requirements

- Communication
- Minimal similarity

Defining Advice Budget: Ms. Pac-Man

Episode lengthUp to 2000 steps

Training period 500 episodes

Advice budget 1000 actions

Main question:
How can the teacher spend
its advice budget most
effectively

Proposed solutions

Early advising

Importance advising

Mistake correcting

Predictive advising

Early advising

Importance advising

Mistake correcting

Predictive advising

Student training

Advice

Early advising

Importance advising

Mistake correcting

State importance

Teacher knowledge

 $Q(s,a) \approx \text{Return from taking action } a \text{ in state } s$

Importance metric

$$I(s) = \max_{a} Q(s, a) - \min_{a} Q(s, a)$$

In Pac-Man

Early advising

Importance advising

Mistake correcting

Early advising

Importance advising

Mistake correcting

Early advising

Importance advising

Mistake correcting

Predicting intent

Agent Variations

- Learning algorithms
 - Q-learning
 - SARSA

- Feature sets
 - Low-asymptote (initial state description)
 - High-asymptote (more useful features)

Same Features, Sarsa

Same Features, Sarsa

Same Features, Sarsa

Current Work

- Apply same techniques to teaching humans
- Provide regret bounds depending on teacher's abilities

Future Work

- Multiple teachers
- More differences between agents
- When to ignore teacher
- Definitions of state importance

Agents Teaching Agents

- Transfer learning is great, if have full access to source agent
- Student learning can be improved with a small advice budget
- Advice has greater impact when spent on important states
- Advice has greater impact when spent on mistakes
- Teachers can improve student learning even when agents
 - have different learning algorithms
 - state representations
 - Can outperform teachers
- Mountain Car, Pac-Man, StarCraft

Part VI: Humans Teaching Agents

- Gabriel V. de la Cruz Jr., Bei Peng, Walter S. Lasecki, and Matthew E. Taylor. Towards Integrating Real-Time Crowd Advice with Reinforcement Learning. IUI-15.
- W. Bradley Knox and Peter Stone. Reinforcement Learning from Simultaneous Human and MDP Reward. AAMAS-12.
- W. Bradley Knox and Peter Stone. Combining Manual Feedback with Subsequent MDP Reward Signals for Reinforcement Learning. AAMAS-10.
- W. Bradley Knox and Peter Stone. Interactively Shaping Agents via Human Reinforcement: The TAMER Framework. KCAP-09.
- W. Bradley Knox, Matthew Taylor, and Peter Stone. Understanding Human Teaching Modalities in Reinforcement Learning Environments: A Preliminary Report. ALIGHT workshop (at IJCAI-11).
- Robert Loftin, Bei Peng, James MacGlashan, Michael L. Littman, Matthew E. Taylor, Jeff Huang, and David L. Roberts. Learning behaviors via human-delivered discrete feedback: modeling implicit feedback strategies to speed up learning. Journal of Autonomous Agents and Multi-Agent Systems, pages 1-30, 2015.
- Robert Loftin, Bei Peng, James MacGlashan, Michael Littman, Matthew E. Taylor, David Roberts, and Jeff Huang. Learning Something from Nothing: Leveraging Implicit Human Feedback Strategies. RO-MAN-14.
- James Macglashan, Michael L. Littman, Robert Loftin, Bei Peng, David Roberts, and Matthew E. Taylor. Training an Agent to Ground Commands with Reward and Punishment. AAAI-14.

Learning from feedback (interactive shaping)

Knox+, 2008-2013

Key insight: trainer evaluates behavior using a model of its long-term quality

Learn a model of human reinforcement

 $H: S \times A \to \mathbb{R}$

Directly exploit the model to determine action Also, can combine with MDP's reward

Tetris

During Training After 2 games of training

a priori comparison

Demonstration more specifically points to the correct action

Interface

- LfD interface may be familiar to video game players
- LfF interface is simpler and taskindependent

Task expertise

- LfF easier to judge than to control
- Easier for human to increase expertise while training with LfD

Cognitive load

Less for LfF

Bayesian Inference Approach

- Here, feedback is categorical
- Use Bayesian approach
 - Find maximum a posteriori (MAP) estimate of target behavior
- Learning behaviors via human-delivered discrete feedback: modeling implicit feedback strategies to speed up learning, Loftin+, JAAMAS-15

Goal

- Human can give positive or negative feedback
- Agent tries to learn policy λ^*
- Maps observations to actions

For now: think contextual bandit

Example: Dog Training

Teach dog to sit & shake

- Mapping from observations to actions
- Feedback: {Bad Dog, Good Boy}

History in Dog Training

Feedback history h

• Observation: "sit", Action: Feedback: "Bad Dog"

• Observation: "sit", Action: Feedback: "Good Boy"

•

Really make sense to assign numeric rewards to these?

Bayesian Framework

- Trainer desires policy λ^*
- h_t is the training history at time t
- Find MAP hypothesis of λ^* :

$$\underset{\lambda}{\operatorname{argmax}} p(\lambda^* = \lambda | h_t) = \underset{\lambda}{\operatorname{argmax}} p(h_t | \lambda^* = \lambda) p(\lambda^* = \lambda)$$

Model of training process Prior distribution over policies

Assumed trainer behavior

- Decide if action is correct
 - Does $\lambda^*(o)=a$? Trainer makes an error with $p(\varepsilon)$
- Decide if should give feedback
 - $-\mu^+, \mu^-$ are probabilities of neutral feedback
 - If thinks correct, give positive feedback with $p(1-\mu^+)$
 - If thinks incorrect, give negative feedback with $p(1-\mu^2)$
- Could depend on trainer

Feedback Probabilities

Probability of feedback l_t at time t is:

$$p(l_{t} = l^{+}|o_{t}, a_{t}, \lambda^{*}) = \begin{cases} (1 - \epsilon)(1 - \mu^{+}) &, \lambda^{*}(o_{t}) = a_{t} \\ \epsilon(1 - \mu^{+}) &, \lambda^{*}(o_{t}) \neq a_{t} \end{cases}$$

$$p(l_{t} = l^{0}|o_{t}, a_{t}, \lambda^{*}) = \begin{cases} (1 - \epsilon)\mu^{+} + \epsilon\mu^{-} &, \lambda^{*}(o_{t}) = a_{t} \\ \epsilon\mu^{+} + (1 - \epsilon)\mu^{-} &, \lambda^{*}(o_{t}) \neq a_{t} \end{cases}$$

$$p(l_{t} = l^{-}|o_{t}, a_{t}, \lambda^{*}) = \begin{cases} \epsilon(1 - \mu^{-}) &, \lambda^{*}(o_{t}) = a_{t} \\ (1 - \epsilon)(1 - \mu^{-}) &, \lambda^{*}(o_{t}) \neq a_{t} \end{cases}$$

Inferring Neutral

- Try to learn μ^+ and μ^-
- Don't assume they're equal

- Many trainers don't use punishment
 - Neutral feedback could be punishment

- Some don't use reward
 - Neutral feedback could be reward

EM step

$$\lambda_{i+1} = \underset{\lambda \in P}{\operatorname{argmax}} \int_0^1 \int_0^1 p(\mu^+, \mu^- | h, \lambda_i) \ln p(h, \mu^+, \mu^- | \lambda) d\mu^+ d\mu^-$$

- Where λ_i is *i*th estimate of maximum likelihood hypothesis
- Can simplify this (eventually) to:

$$\lambda_{i+1}(o) = \underset{a \in A}{\operatorname{argmax}} (\alpha(p_{o,a} - n_{o,a}) + \beta u_{o,a})$$

- α has to do with the value of neutral feedback (relative to $|\beta|$)
- β is negative when neutral implies punishment and positive when implies reward

User Study

BEGIN TRAINING

LEARNING COMPLETE

Once a rat reaches the corn field, it will disappear

Comparisons

- Sim-TAMER
 - Numerical reward function
 - Zero ignored
 - No delay assumed
- Sim-COBOT
 - Similar to Sim-TAMER
 - Doesn't ignore zero rewards

Comparison of success rates in the first user study

Categorical Feedback outperforms Numeric Feedback

Comparison of success rates in the second user study

Leveraging Neutral Improves Performance

Mechanical Turk Studies

For our third study we posted three Human Intelligence Tasks to Amazon Mechanical Turk.

The Dog/Rat sprites, and three other sprite pairs (right) were used.

A total 211 users participated in the Mechanical Turk studies.

Users were paid \$0.75 for participating, with a \$0.25bonus for training performance.

Alternative Sprites:

Effects of Agent Appearance

Distribution of strategies used in the Mechanical Turk study when training agents appearing as a dog, robot, snake or arrow.

Agent Sprite	Target Sprite	R+/P+	R+/P-	R-/P+	R-/P-
dog	rat	151(85%)	25(14%)	1(.5%)	1(.5%)
robot	battery	188(88%)	21(10%)	0(0%)	4(2%)
snake	bird	64(84%)	7(9%)	2(3%)	3(4%)
arrow	box	43(83%)	6(11%)	1(2%)	2(4%)

- Current Work
 - Sequential tasks
 - Simultaneously learning language model
- Future Work
 - How do people want to teach?
 - How do people sequence tasks?
 - Automated training sequences?

RL + Crowdsourcing

Unlikely to be experts

May not take task seriously

May intentionally act poorly

Towards Integrating Real-Time Crowd Advice with Reinforcement Learning, de la Cruz+, IUI-15

Crowd can identify "forced errors"

4 Distinct Experiments

	Mistake Identification	Action Suggestion
Review		
Real-time		

Current work: Leveraging Crowd Advice

- Reward Shaping (e.g., Brys+, AAAI-15, AAMAS-15, IJCAI-15)
- Learning from domonstration ideas (e.g., HAT)
- Bias action selection

Future Work

- Collecting the Crowd's Advice
 - Real-time System
 - Cyclic review system
 - Integrating multiple responses
 - Weigh by workers competence
- Generalize to other domains?
- Physical robots?

- LfD is great if have expert and lots of time
 - How to improve autonomously on few demonstrations?
- What about teaching like dog?
- Task sequencing?
- Leveraging crowd?

Conclusions

- RL is awesome
- Faster RL is awesomer
- What other ways are there to bias agents and their exploration?

irll.eecs.wsu.edu

eecs.wsu.edu/~taylorm

Tim Brys and Matthew E. Taylor