
Automated Mixed Resolution Tiling

Peter Scopes
Department of Computer Science,

University of York, UK
pds506@york.ac.uk

Daniel Kudenko
Department of Computer Science,

University of York, UK
kudenko@cs.york.ac.uk

ABSTRACT
Tile Coding (TC) is a popular and widely used form of value
function approximation for Reinforcement Learning (RL).
The size of tiles impacts an agent’s ability to learn [10, 6]:
tiles that are too large lead to performance degradation;
long periods of learning causes divergence from the optimal
policy; and, decreasing the exit probability of non-optimal
action(s) improves performance. However, tiles that are too
small do not gain any benefit from using function approxi-
mation.

Choosing a tiling that well suits an environment can re-
quire expert knowledge of TC and in depth knowledge of the
environment and its transition function, neither of which
may be available. Moreover, in RL it is often assumed
that the transition and reward functions aren’t fully known.
Therefore prescribed choices for tilings are guesses at best.
This motivates the creation of algorithms to determine a
tiling whilst an agent is learning.

In this paper we introduce a novel algorithm, automated
Mixed Resolution Tiling (AMRT), which can alter the tiles
in a tiling whilst the agent is learning. We demonstrate em-
pirically that using AMRT to alter a tiling non-uniformly
during learning results in performance matching or exceed-
ing the best fixed tiling. We also conduct an empirical study
on the impact specific tile shapes can have on learning.

1. INTRODUCTION
Reinforcement Learning (RL) is a popular and widely-

studied machine learning technique, where an agent learns a
policy through continual interactions with the environment,
based on performing actions and observing their rewards.
In the basic RL formulation, in order to learn an optimal
policy, an agent may need to visit each environment state
and perform all possible actions in that state at least once
(and often repeatedly). For this reason the speed of learning
does not scale well to complex environments with large state
spaces.

In order to deal with large state spaces, a popular tech-
nique employed in RL is Tile Coding (TC) [1]. In this ap-
proach, values from one or more state features are grouped
into exhaustive fixed uniformtitions, called tiles. This re-
duces the size of the state space, and thus TC enables an
agent to learn more quickly. However, with the reduction
of state space granularity also comes a potential reduction
in the precision and quality of the learnt policy. Moreover,
in certain worst-cases learning can be severely impaired by
a poor design of tiles (see for example [6] for a more formal
understanding and analysis of potential TC problems).

Due to the popularity of TC in the area of RL, and be-
cause of the big impact tile design has on learning perfor-
mance, the ability to design good tilings that increase the
speed of learning while preserving the quality of the learned
behaviour is highly important. However, tile design is a
hard and not well-studied problem that often requires good
knowledge and understanding of the agent environment. In
cases where such a deep understanding is not available, a de-
signer is left with trying different configurations of tiles and
tilings until a satisfactory performance is reached. This is
a lengthy and sometimes infeasible procedure, which could
be made obsolete if an automated method for good tile de-
sign can be found. A first approach, Adaptive Tile Coding
(ATC) [10], addressed this problem by starting with a few
large tiles and intelligently splitting the tiles based on one
of two criteria. ATC provides both further evidence that
splitting tiles over time improves learning [4] and that doing
so in an intelligent manner is possible and effective [7].

In previous work by Scopes and Kudenko [6] a manual
method for tiling design called Mixed Resolution Tiling (MRT)
was introduced. MRT is based on heuristics derived from
theoretical properties of TC. Simply put, MRT recommends
high resolution (small) tiles near the optimal transition path
through the state space; tiles further from the optimal path
should have low resolution (large) tiles, and taper from high
to low resolution the further away they are from the optimal
path.

In addition, one of the theoretical properties stated that
increasing the probability of exiting a tile with an optimal
action improves the performance of TC. However, manipu-
lating tiles so that particular actions have a increased proba-
bility of being used on exit is hard to achieve and would need
to be done a per-tile basis. One possible way of achieving
this would be to alter the tile’s shape.

Based on the the ideas presented above this paper per-
forms an empirical study on the impact of specific tile shapes
have on learning and then, using the conclusions of the study
and ideas from MRT, proposes an automated version of the
manual MRT algorithm, called Automated MRT (AMRT),
which splits tiles along or near the agent’s current best path
from the initial tile to the goal tile whilst learning. AMRT
does not require prior knowledge of the environment or tran-
sition function, rather it can devise a new tiling whilst learn-
ing in order to improve performance.

2. BACKGROUND

2.1 Reinforcement Learning (RL)
Reinforcement learning is a method where an agent learns

by receiving rewards or punishments through continuous in-
teractions with the environment [8]. The agent receives a
numeric feedback relative to its actions and in time learns
how to optimise its action choices. Typically reinforcement
learning uses a Markov Decision Process (MDP) as a math-
ematical model [5].

An MDP is a tuple 〈S,A, T,R〉, where S is the state space,
A is the action space, T (s, a, s′) = Pr(s′|s, a) is the prob-
ability that action a in state s will lead to state s′, and
R(s, a, s′) is the immediate reward r received when action
a taken in state s results in a transition to state s′. The
problem of solving an MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition prob-
abilities and reward function) are available, this task can be
solved using dynamic programming [2].

When the environment dynamics are not available, as with
most real problem domains, dynamic programming cannot
be used. However, the concept of an iterative approach re-
mains the backbone of the majority of reinforcement learn-
ing algorithms. These algorithms apply so called temporal-
difference updates to propagate information about values of
states, V (s), or state-action pairs, Q(s, a) . These updates
are based on the difference of the two temporally different
estimates of a particular state or state-action value. The
Q-Learning algorithm is such a method [9]. After each real
transition, (s, a) → (s′, r), in the environment, it updates
state-action values by the formula:

Q(s, a)← Q(s, a) +α · (r+ γ ·maxaQ(s′, a′)−Q(s, a)) (1)

where α is the rate of learning and γ is the discount factor.
It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, moved to a new state s′, and if the action a′ pertaining
the greatest value in the new state s′ was chosen.

2.2 Tile Coding (TC)
In Tile Coding (TC) [1] one or more features of the state

space is exhaustively partitioned, called a tiling. Each par-
tition of the tiling is called a tile. Only one tile from each
tiling can be activated by any one state.

Figure 1 is an example of two tilings covering a 2-dimensional
state space. Each dimension corresponds to a numerical fea-
ture and each point in the space corresponds to a state. As
can be seen the two tiles activated in each tiling have been
highlighted. The update rule is altered to reflect the use of
tiles [8]:

Q(T (s), a)←Q(T (s), a)+

α · (r + γ ·maxaQ(T (s′), a′)−Q(T (s), a))

Where T (s) returns the tiles that are activated by the
state s. TC simplifies the learning for an agent by allowing
the agent to learn the tile-space rather than the state-space,
which is usually much smaller in cardinality.

The basic TC algorithm can be seen in Algorithm 1. The
algorithm starts by initialising the tilings and the tiles within.
Then, while there is still time to learn it repeatedly resets
the environment and begins an episode. During an episode

Figure 1: Multiple, overlapping grid tilings [8]

the agent perceives the current state, selects and performs
the action according to a exploration/exploitation policy,
receives a reward, and for each tiling updates the activated
tile. S is the set states in the environment, A is the set of ac-
tions, T is the tile coding function, R is the reward function,
m is the number of tilings to use, n is the total number of
tiles to use, π is the action selection policy, α is the learning
rate, and γ is the future discount factor.

Algorithm 1 Tile-Coding(S,A, T,R,m, n, α, γ)

1: for i← 1 to m do
2: Initialise tiling i with n/m tiles
3: for j ← 1 to n/m do
4: Initialise tile tj and Q(tj , a)← 0, ∀a ∈ A
5: repeat
6: reset the environment
7: while episode not over do
8: s← current state from S
9: a← action chosen by exploration policy

10: s′ ← state resulting from executing a in s
11: r ← R(s, a, s′)
12: for i← 1 to m do
13: t← Ti(s)
14: t′ ← Ti(s

′)
15: ∆← r + γ ·Q(t′, a′)−Q(t, a)
16: Q(t, a)← Q(t, a) + α

m
∆

17: until time expires

Tile Coding, as any value function approximation method,
impacts the agent’s learning. This can be positive or neg-
ative; for example, TC can reduce the time required to
learn a policy, or in the worst case TC can hinder learning
entirely. Under the assumptions that transitions between
states within a tile yield the same reward, all actions can
result in a transition to a state within the same tile, com-
puters approximate numbers, and Q-Learning or SARSA is
used the following theorems hold [6]:

Theorem 1. Increasing the probability that an agent will
do multiple, consecutive transitions on a single tile will de-
crease an agent’s ability to stably learn a policy or to retain
a learnt policy.

Theorem 2. Decreasing the exit probability of non-optimal
actions, or increasing the exit probability of optimal action(s),
will increase an agent’s ability to stably learn and retain
learnt policies.

Theorem 1 means that when a tile is too large an agent
can become unable to stably learn or reliably retain a learnt
policy; though when a tile is too small the agent gains no
benefit from using TC. Furthermore the longer an agent is
given to learn using TC the higher the probability the agent
will be unable to reliably retain a learnt policy. How this
impacts an agent’s performance is dependant on different
conditions such as the size of the tile and the position of the
tile in the tile space.

Theorem 2 implies that the problems raised by Theorem 1
can be counteracted by increasing the probability exiting a
tile on an optimal actions. This can be achieved by altering
a tile’s shape.

2.3 Automated Tiling Design
A limitation of TC is that it requires a human designer to

correctly determine the tilings. While in principle tiles can
be any shape or size they are usually axis-aligned rectangles.
Sherstov and Stone previously demonstrated that reducing
the size of tiles during learning is beneficial [7]. This is due
to the generalised knowledge of the larger tiles being passed
on to the smaller tiles which are then able to refine that
information.

Whiteson et al [10] introduced Adaptive Tile Coding (ATC),
an algorithm that automatically alters a single tiling during
learning. When a threshold is reached ATC splits a tile from
the tiling which maximises a criterion. The tile is split in
half along one feature. ATC demonstrated that automated
tilings can lead to faster learning and improved learnt poli-
cies. In our empirical experiments we compare ATC’s per-
formance with AMRT under the assumption that the agent
does not have access to the transition function (see Section
4.2.3).

3. TILE SHAPE
Theorem 2 states that the performance of TC can be im-

proved by increasing the probability of exiting a tile with an
optimal action. There are two ways to alter the exit proba-
bilities of a tile: changing its size or its shape. The impacts
of tile size have already been shown by Scopes and Kudenko
[6]. The impacts of tile shape is a significantly harder area
to study due to the vast space of possible shapes. Neverthe-
less an algorithm that decides when and where to split tiles
should also have some notion of how. Should a tile be split
in half along every feature to create uniform squares (see
Figure 2a), split so that one or more features gain a higher
resolution (see Figure 2b), or are there specific conditions
when one method is preferable other the other?

To approach these questions we have conducted an empir-
ical study of the effects of tile shape.

3.1 Experiments & Results

3.1.1 2d-Random Walk (2d-RW)
2d-Random Walk (2d-RW) is a 2-dimensional environ-

ment where the agent must traverse from some starting
point, usually the centre of the environment, to one of the
goal states. There are four possible actions: NORTH, EAST,

(a) A uniform split of a tile (b) A slats split of a tile

Figure 2: Examples of different ways to split tiles

Figure 3: A 2d-Random Walk Environment (Agents moves
from the red circle to a green square)

SOUTH, and WEST. The goal states are located around the
outer perimeter of the environment. In Figure 3 the red cir-
cle is the starting point, any of the green squares are goal
states, and the four corner squares are unreachable states.
The agent receives a reward for reaching a goal state, all goal
states along a particular edge will yield the same reward but
the reward can vary between different edges. For example
reaching any goal state to the east might yield a reward of
10 whereas any other goal state would yield 5.

Q-learning was set up as follows: α = 0.4 and γ = 0.9,
and ε-Greedy exploration was used with ε = 0.4. Tile shapes
used were limited to axis-aligned rectangles. Specifically, in
each experiment all the tiles in a tiling had the same shape.
We compared 1 tiling of varying sizes of squares and ob-
longs (called slats) in various sizes of the environment. The
reward for reaching different perimeter edges in the environ-
ment also varied. Experiments were set up so that there are
unique optimal policies or multiple optimal policies. The
average of 25 runs is recorded in the experiment results.

Figure 4 illustrates some of the different possible set-ups
used in the empirical study. The bold, green edges indicate
that the highest reward of 10 is given when the agent arrives
at a state on that edge. When the agent arrives at any other
edge it receives a reward of 5. The inner lines show the shape
of the tiles used. The edges that yielded the highest reward
were altered. For example, an instance of 2d-RW with a
unique optimal policy could have the edge corresponding
with the highest reward on any one of the north, east, south,
or west perimeter edges.

2d-RW was used to empirically show the impact of tile
shape on learning. 2d-RW can be viewed as modelling a sin-

(a) Square tiles with unique, dual adjacent, and dual opposite
optimal policies respectively

(b) Slat tiles parallel to the direction of the unique, dual adjacent,
and dual opposite optimal policies respectively

(c) Slat tiles perpendicular to the direction of the unique, dual
adjacent, and dual opposite optimal policies respectively

Figure 4: Examples of different experiment set-ups

gle tile within a larger environment. Whereas in 2d-RW an
episode ends when a perimeter state is reached, this would
represent the agent leaving this tile in a larger environment.

3.1.2 Results of Tile Shape
Table 1 shows the mean average reward collected for the

tile shape experiments. The results are separated into 4 dif-
ferent environment sizes: 03x03, 05x05, 09x09, and 11x11.
Different tile shapes are evaluated in different instances of
the 2d-RW environment, where the number of optimal poli-
cies is varied: unique, two adjacent, and two opposite (see
Figure 4). We define three types of tiles: Square tiles, Paral-
lel Tiles (slat tiles that lie parallel to the direction of move-
ment toward the goal), and Perpendicular Tiles (slat tiles
that lie perpendicular to the direction of movement toward
the goal). It is worth noting in the cases where the goals are
adjacent slat tiles are simultaneously parallel and perpendic-
ular to the two goals and therefore we should expect similar
performance. The rightmost column in Table 1 shows how
frequently the optimal decision on alignment of slat tiles
needs to be correctly guessed for slat tiles to outperform
square tiles. The frequency, w, is calculated using the fol-
lowing expression:

w =
MIN(rpar, rper)− rsq

MIN(rpar, rper)−MAX(rpar, rper)

where MIN(rpar, rper) 6= MAX(rpar, rper), rsq is the aver-
age reward of square tiles, and rper is the average reward of
the perpendicular slat tiles and rpar is the average reward

of the parallel slat tiles and:

w =
rsq

MAX(rpar, rper)

where MIN(rpar, rper) = MAX(rpar, rper). In cases where
MIN(rpar, rper) ≥ rsq the frequency calculation is not ap-
plicable since slat tiles perform at least as well as square
tiles in the worst case.

03x03
Squares Slats w

Perpendicular Parallel
Unique 9.999 10 5.072 100%

Dual
Adjacent 10 10 10 n/a
Opposite 10 9.999 5.132 100%

05x05
Squares Slats w

Perpendicular Parallel
Unique 9.015 9.513 5.010 89%

Dual
Adjacent 9.067 9.493 9.492 n/a
Opposite 9.983 9.998 5.017 100%

09x09
Squares Slats w

Perpendicular Parallel
Unique 8.704 8.993 5.014 93%

Dual
Adjacent 9.003 8.995 9.010 53%
Opposite 9.883 9.979 5.031 98%

11x11
Squares Slats w

Perpendicular Parallel
Unique 8.809 8.983 5.025 96%

Dual
Adjacent 9.308 9.186 9.262 160%
Opposite 9.607 9.917 5.060 94%

Table 1: Average rewards of Tile Shapes on a range of en-
vironment sizes

The results of our experiments show that:

• when there is a unique optimal policy, using perpen-
dicular slat tiles result in the quickest and most stable
learning;

• when there are 2 optimal policies that are opposite to
one another, using perpendicular slat tiles result in the
quickest and most stable learning;

• when there are 2 optimal policies that are adjacent to
one another, then no one tile shape consistently out-
performed any other.

We can conclude therefore, when there is high certainty
that all optimal policies have been correctly identified it is
beneficial to use perpendicular slat tiles over square tiles.
Whereas, when there isn’t high certainty then square tiles
should be used instead.

Considering that automated tiling methods use estimated
values to decide which tiles to split, it is unlikely they will
have high enough certainty to make slat tiles beneficial.
Therefore, it is the conclusion of this study that automated
tiling methods should split tiles evenly along each feature
rather than giving priority to one feature over another.

4. MIXED RESOLUTION TILING
Mixed Resolution Tiling (MRT) was introduced as a man-

ual method of devising tilings which consists of tiles of het-
erogeneous sizes [6]. Specifically MRT uses knowledge of op-
timal transition paths through the state space of an MDP;
tiles with “high resolution”, small tiles, should be used on or
near an optimal path, “low resolution”, large tiles, should be
used away from the optimal paths, and that the resolution
of the tiles should be tapered in between. MRT was based
on the heuristics derived from theoretical properties of TC.

Automation of MRT requires an algorithm which learns
about the environment splitting tiles when confident. In ef-
fect, the algorithm needs to learn a transition model of the
tile space for each tiling which keeps track of its confidence.
The transition model keeps track of the number of transi-
tions from one tile to another distinct tile for each action
and therefore can return the observed probability of an tile-
action-tile transition. Using such a transition model a path
from the start to the end tile can be determined. Further-
more, automated MRT should have a means of determining
whether a tile is at risk of becoming unreliable in retaining a
learnt policy. Finally, automated MRT would need fail safes
to ensure that if the original tiles were too large for a given
environment it could reduce the size of the tiles enough to
be able to start learning.

4.1 Algorithmic Automation
Automated Mixed Resolution Tiling (AMRT), shown in

Algorithm 2, is based on MRT and the standard tile coding
algorithm (see Algorithm 1) AMRT adds two functions:

• AMRT-DURING which is called at every update dur-
ing an episode; and

• AMRT-POST which is called after every episode.

To do this AMRT requires a constant maxSteps, the max-
imum number of steps in an episode, a new parameter c,
which denotes a confidence measure, and three variables
nSteps, the number of updates performed during the cur-
rent episode, nUpdates, the counter for the total number of
updates performed, and tm, a set of transition models for
each tiling.

The principle behind AMRT is to ensure that tiles on or
around the optimal path(s) have high resolution, all tiles
are resolved enough for exploration, and the impact of local
convergence where the Q-values on a single tile all converge
toward the same value (r

1−γ where γ < 1) is reduced.
AMRT ensures tiles on or around the optimal path are

smaller by using a transition model of the tile space to cal-
culate the least-cost path from an initial tile to the most
recently found goal tile and splitting all tiles, and neigh-
bouring tiles, along that path. At the end of an episode, if
a goal state was reached, AMRT performs an A∗ search for
the least-cost path from the starting tile or the goal tile. The
cost is calculated by using a function of the current Q-values
and the estimated probabilities of the transitions along that
path.

AMRT detects too large tiles in a number of ways: it
tracks the number of repeated updates1 on a tile and will
only split tiles on or around the currently estimated optimal

1A repeated update is any update where the state-action-
state transition moves into a new state but the activated tile
remains the same.

Algorithm 2 AMRT(S,A, T,R,m, n, π, α, γ, c)

1: maxSteps← maximum number of steps per episode
2: nUpdates← 0
3: for i← 1 to m do
4: Initialise tiling i with n/m tiles
5: Initialise transition model, tmi

6: for j ← 1 to n/m do
7: Initialise tile tj and Q(tj , a)← 0, ∀a ∈ A
8: repeat
9: reset the environment

10: nSteps← 0
11: s̄← starting state from S
12: while episode not over do
13: s← current state from S
14: a← action chosen by exploration policy
15: s′ ← state resulting from executing a in s
16: r ← R(s, a, s′)
17: AMRT-DURING()
18: for i← 1 to m do
19: t← Ti(s)
20: t′ ← Ti(s

′)
21: ∆← r + γ ·Q(t′, a′)−Q(t, a)
22: Q(t, a)← Q(t, a) + α

m
∆

23: AMRT-POST()
24: until time expires

path whose ratio of the total number of updates to the num-
ber of repeated updates exceeds 1

|A| , where |A| is the number

of actions (this is the SPLIT-REPEATED function in Algo-
rithm 4, line 7). During learning, if c · maxSteps updates
have been performed since a goal state was last entered all
tiles are split (see Algorithm 3, lines 5 to 9). Finally, if at
the end of an episode only the starting tile was activated on
a particular tiling then all tiles in that tiling are split (see
Algorithm 4, lines 10 to 14).

Empirical trials indicated that when the Q-values on a sin-
gle tile were all locally converging toward a non-zero value
exploration could be hindered. This is caused by most explo-
ration policies using a mixture of exploration and exploita-
tion, exploiting the currently held best action a percentage
of the time. The problem tile is usually located in the tile
space in such a way that the tile cannot be readily exited
using the currently held best action. Since the exploration
policy is exploiting this action a percentage of the time, there
is an overall bias for action being used. This causes the Q-
values of this tile to become, in a sense, locked. Furthermore,
splitting the tile would not solve the problem as the locked
behaviour would be propagated to the split tiles. AMRT
counteracts Q-value local convergence of all Q-values on a
single tile to a single value by detecting signs of local conver-
gence on a tile during learning and resetting the Q-values of
that tile if convergence has almost occurred (see Algorithm
3, lines 13 and 14).

Algorithm 3, AMRT-DURING, specifies what to do at
every step during an episode. Firstly, nSteps and nUpdates
are incremented (see lines 1 and 2). Then, if the agent moved
into a terminal state, nSteps is subtracted from nUpdates.
This informs AMRT that the steps of this episode should not
be considered in the detection of too large tiles (see lines
3 and 4). Next, if the threshold for nUpdates is reached
(c ·maxSteps) AMRT believes that there are too large tiles

Algorithm 3 AMRT-DURING()

1: nUpdates← nUpdates+ 1
2: nSteps← nSteps+ 1
3: if inTerminalState() then
4: nUpdates← nUpdates− nSteps
5: if nUpdates > c ·maxSteps then
6: for i← 1 to m do
7: split all tiles in tiling i
8: CLEAR(tmi)
9: nUpdates← 0

10: for i← 1 to m do
11: if ti 6= t′i then
12: INCREMENT(tmi, ti, t

′
i, a)

13: if ALMOST-CONVERGED(ti) then
14: reset ti Q-values

present to properly explore the environment. Therefore all
tiles are split, the transition models cleared, and nUpdates
reset to zero see (lines 5 to 9). Finally for each tiling if
the activated tile changed, the transition model is informed
and if all the tile’s Q-values have almost locally converged
toward a single value its Q-values are reset (see lines 10 to
14).

Algorithm 4, AMRT-POST, specifies what to do after ev-
ery episode. Firstly, if a goal state is reached, for each tiling
an A∗ search for the least-cost path from the tile activated
by the initial state, Ti(s̄), to the tile activated by the goal
state, Ti(ṡ), through the transition model, tmi, is performed.
Tiles that have had fewer updates than the confidence fac-
tor c are excluded from the search (see lines 1 to 8). This
means there may not be a path through the transition model
from the start tile to the goal tile. If a path is found, then
the neighbouring tiles, according to the transition model,
tmi, are found as well. All tiles in the union of the path
and neighbours with at least 1

|A| percent, where |A| is the

number of actions, of repeated updates are split and those
same tiles are removed from tmi. Finally, if a goal was not
reached and the whole episode was spent only within the
starting tile (|tmi| ≤ 1), this indicates that the tiles of the
tiling are too large therefore all tiles of that tiling are split
and nUpdates is set to zero (see lines 9 to 14).

Algorithm 4 AMRT-POST()

1: if goal state was reached then
2: ṡ← goal state reached from S
3: for i← 1 to m do
4: path← A∗(tmi, Ti(s̄), Ti(ṡ))
5: if not empty(path) then
6: neighbours← neighboursOf(tmi, path)
7: SPLIT-REPEATED(path ∪ neighbours)
8: REMOVE-ALL(path ∪ neighbours, tmi)
9: else

10: for i← 1 to m do
11: if |tmi| ≤ 1 then
12: split all tiles
13: CLEAR(tmi)
14: nUpdates← 0

Following from the conclusions of the tile shape study
when tiles are split, they are split in half along every feature
to form square tiles, e.g. for 2 features a single tile would

become 4 new tiles. Empirical trials also indicated that set-
ting a minimum size for a tile to be allowed to split decreased
the running time of AMRT. When a tile was split, counters
to monitor the number of updates and repeated updates for
each new tile were set to zero.

4.2 Experimentation & Results

4.2.1 Puddle World

Figure 5: A Puddle World Environment (Agents move to-
ward the goal avoiding the puddles

Puddle World is a continuous 2d navigation environment
where an agent starts in the north-west and must travel to
the south-east avoiding “puddles”. There are four available
actions: NORTH, EAST, SOUTH, and WEST. Although
the movement distance is fixed the environment is continu-
ous as Gaussian-random noise is applied to the agent’s move-
ment. There is a negative reward for each action the agent
takes and it gets a reward of 0 for reaching the goal area.
The agent also receives an increasingly large negative reward
for being in a puddle the closer to the centre of that pud-
dle the agent is. There are two state features: the x and y
coordinate of the agent.

4.2.2 Mountain Car
Mountain Car is a continuous environment where an agent

must control a vehicle stuck in a valley through forward,
backward, and neutral actions. The objective is to arrive
at the far right peak but this can only done if enough mo-
mentum is gained from coming down the left-hand side of
the valley. The agent is accelerated toward the bottom of
the valley by gravity. The agent receives a reward of −1 for
every action taken and 0 for reaching the goal. There are
two state features: the location and velocity of the car.

4.2.3 Results of AMRT
Puddle World and Mountain Car were used to compare

the performance of AMRT against fixed uniform TC and
ATC [10]. The implementation of ATC used does not require

Figure 6: A Mountain Car Environment (Agents escape the
valley)

the transition function. Experiments were conducted with
different number of tilings, m ∈ {1, 5, 10, 25, 50}, and tiles
per feature, n ∈ {5, 10, 15, 20, 25, 50, 100}, for fixed uniform
TC and a selection, including the best found, have been
used as comparison. Likewise, the threshold parameter, p,
for ATC was trialled at p ∈ {5, 10, 15, ..., 95, 100} and like
the authors we found p = 50 a good value. For AMRT we
discovered through trial and error that a consistently good
value for the confidence, c = 50. AMRT used 1 tiling and
initially started with 3 tiles per feature; AMRT was splitting
was limited to having at most 100 tiles per feature.

The ATC implementation received from the authors learnt
the value function for each tile rather than the Q-value. The
ATC implementation also used the transition function in
action selection to generate the Q-values by sampling each
action once in the environment and using the sampled tran-
sition reward and state value. Furthermore, the learning al-
gorithm sampled random states of the environment instead
of playing out episodes. Finally, the policy criterion requires
the transition function to gain access to the number of pos-
sible successor states. For these reasons the implementation
given had to be altered to remove the need for knowledge
about the transition function. These alterations included:
playing out episodes, learning Q-values and using them in
action selection, and modifying one of the tile splitting cri-
terion2.

Q-learning in the Puddle World Environment was set up
as follows: α = 0.4 and γ = 0.9, and ε-Greedy exploration
was used with ε = 0.4 without linear decay. Experiments
were repeated 25 times and the average reward after each
update is shown the the results (shown in Figure 7). The
y-axis is the reward and the x-axis is the number of updates.
The lightly coloured areas surrounding each line represents
the standard error allowing us to be confident that these
results are statistically significant. The black line is AMRT
with an initial 3x3 tiling and c = 50, the green line is 10x10
TC with 1 tiling, the blue is a 25x25 TC with 1 tiling, and
the red is ATC with p = 50 following the Difference cri-
terion (the better performing of the two criteria with our
implementation).

2Specifically, the policy criterion was altered to increment
the change counter when a sub-tile’s Q-values would result
in a possible change in policy

Figure 7: Puddle World Results: AMRT vs various instance
of TC and ATC

We can see that AMRT is the first to reach an optimal
policy. 10x10 TC with 1 tiling learns a good policy faster
than AMRT but AMRT quickly overtakes. 25x25 TC with 1
tiling learns at a similar yet slower pace to AMRT but does
also reach the an optimal policy. This empirically shows
that in the Puddle World environment, AMRT can match
the best fixed uniform tiling performance and arrives at its
final policy more quickly.

Figure 8: Mountain Car Results: AMRT vs various in-
stances of TC

Next we performed similar experiments in the Mountain
Car environment to confirm that AMRT can match or ex-
ceed the performance of fixed uniform TC in non-navigation
environments.

Q-learning in the Mountain Car environment was set up
as follows: α = 0.4 and γ = 0.999, and ε-Greedy exploration
was used with ε = 0.4 without linear decay. Experiments

were repeated 25 times and the average reward after each
update is shown the the results (shown in Figure 8). The
y-axis is the reward and the x-axis is the number of updates.
The lightly coloured areas surrounding each line represents
the standard error allowing us to be confident that these
results are statistically significant. The black line is AMRT
with an initial 3x3 tiling and c = 50, the red is 10x10 TC
with 10 Tilings, the green is 25x25 TC with 1 Tiling, and
the blue is 50x50 TC with 5 Tilings. ATC did not perform
well enough to appear on this graph.

In a similar manner to the results of Puddle World, AMRT
is the first to reach a policy with the highest reward. Again
some of the TC representations learn faster in the initial
stages we can see that AMRT eventually outperforms all of
the present TC initialisations. This empirically shows that
AMRT is not limited to navigation environments and can
exceed the performance of fixed uniform TC.

The results shown above are clear confirmation that AMRT
can match or exceed the performance of basic TC and ATC.
AMRT achieves this without the need for trial and error of
different TC set-ups or a human designer with prior knowl-
edge of the environment. Furthermore, since AMRT uses
A∗ to solve a self generated sub-problem the running times
of AMRT and TC were compared. At worse AMRT took
less than twice as long as the fastest fixed uniform TC run
and at best took less time to run. This means that AMRT
doubly removes the need for trial and error of different TC
set-ups or a human designer with prior knowledge of the
environment.

5. CONCLUSIONS

5.1 Discussion
This paper has presented a novel algorithm AMRT, an

automated version of the manual method of tiling design
MRT. AMRT can outperform fixed uniform TC represen-
tations without any prior knowledge of the environment or
trial and error guesses of different numbers of tilings and
tiles per feature. AMRT achieves this by automatically al-
tering tiles during learning to better match the environment.
One of the appeals of TC is its typically speed of execution.
AMRT is at worst takes twice as long as a run of the fastest
fixed uniform Tile Coding. This removes the need for the
user to design the tiling or trial an error of different set-ups.

This paper has also concluded that tile shapes can both
positively and negatively impact learning. For tile shapes
to be effectively used there must be some knowledge of the
environment either a priori or learnt alongside learning a
policy. Further to this, only with high confidence should slat
shaped tiles be chosen over square shaped tiles at the risk
of an incorrect choice leading to the performance of learning
being hindered.

5.2 Future Work
The study of tile shapes in this paper is a good start but

there is more work needed to be done. This paper lim-
ited the study of tile shapes to axis-aligned rectangular tiles
of the same shape in each tiling. Further work could be
done expanding on the study by looking into heterogeneous
tile shapes, non-axis-aligned tiles, or non-rectangular shaped
tiles.

Further work could also be done to AMRT by incorpo-
rating the criterion’s proposed by Whiteson et al [10] where

they use sub-tiles to help decide how a tile should be split.
Also Chow and Tsitsiklis’ [3] work on how to compute the
tile width of a fixed uniform tiling necessary to learn an ap-
proximate optimal policy could be used to set a minimum
tile size for AMRT.

REFERENCES
[1] J. S. Albus. Brains, behavior, and robotics. Byte books

Peterborough, NH, 1981.

[2] D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 3rd edition, 2007.

[3] C.-S. Chow and J. Tsitsiklis. An optimal one-way
multigrid algorithm for discrete-time stochastic
control. Automatic Control, IEEE Transactions on,
36(8):898–914, Aug 1991.

[4] R. Munos and A. Moore. Variable resolution
discretization in optimal control. In Machine Learning,
volume 49, pages 291–323, 2002.

[5] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and
Sons, Inc., New York, NY, USA, 1994.

[6] P. Scopes and D. Kudenko. Theoretical properties and
heuristics for tile coding. In ALA Workshop, AAMAS
2014, 2014.

[7] E. A. Sherstov and P. Stone. Function approximation
via tile coding: Automating parameter choice. In of
Lecture Notes in Artificial Intelligence, pages 194–205.
Springer Verlag, 2005.

[8] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[9] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, Cambridge University, 1989.

[10] S. Whiteson, M. E. Taylor, and P. Stone. Adaptive
Tile Coding for Value Function Approximation.
Technical report, University of Texas at Austin, 2007.
Technical Report AI-TR-07-339.

