
Parallel Learning using Heterogeneous Agents

Patrick Mannion
Discipline of Information

Technology
National University of Ireland

Galway
p.mannion3@nuigalway.ie

Jim Duggan
Discipline of Information

Technology
National University of Ireland

Galway
jim.duggan@nuigalway.ie

Enda Howley
Discipline of Information

Technology
National University of Ireland

Galway
enda.howley@nuigalway.ie

ABSTRACT
Reinforcement Learning (RL) is a commonly used and ef-
fective Machine Learning technique, but can perform poorly
when faced with complex problems leading to a slow rate
of convergence. Parallel Learning (PL) is a novel paradigm
within RL that seeks to address these concerns. In PL,
multiple agents pool their experiences while learning con-
currently on a problem, thus increasing performance and
decreasing convergence times. Here we present a model-
free Parallel Reinforcement Learning algorithm based on Q-
Learning, which uses Heterogeneous Agents. Slave agents
learn in parallel, where each learns on a different subset of
the state action space for the given problem. The expe-
rience of these Slave agents is then transferred to a Master
agent, where it is used for Q-Value initialisation. The Master
agent then learns on the problem using the full state action
space. Our approach is tested on several deterministic grid-
world domains of varying sizes. We prove experimentally
that our PL approach outperforms a standard Q-Learning
agent, resulting in increased learning speed, and a lower av-
erage number of steps required to reach the goal state after
the given training time. The benefits of our approach versus
a standard Q-Learner are also found to be more significant
as the number of pre-training episodes is increased.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement Learning, Parallel Learning, Transfer Learn-
ing, Multi Agent Systems

1. INTRODUCTION
Reinforcement Learning (RL) is a commonly used and ef-

fective Machine Learning technique. RL algorithms are typi-
cally tested using abstract problem domains (e.g. gridworld,
pole balancing, mountain car etc.), but numerous authors
have also successfully applied RL to a range of more com-
plex and realistic problem domains. These advanced RL
application areas include cloud computing [1], urban traf-
fic signal control [10], air traffic management [16], RoboCup
Soccer [13], and video games [14].

However, many standard RL algorithms do not scale well
when applied to complex environments with large state ac-
tion spaces [5]. This shortcoming limits the potential of
RL techniques when learning in challenging real world do-
mains, resulting in reduced performance and high conver-
gence times. Some more difficult problems may require
hours or even days of training time to reach a useful so-
lution. To increase the usefulness of RL when applied to
complex problem domains like those mentioned above, it is
essential that innovative techniques are developed to tackle
these problems.

Parallel Learning (PL) is a novel paradigm within RL
that is capable of addressing these concerns. In PL, multi-
ple agents pool their experiences while learning concurrently
on a problem, thus increasing performance and decreasing
convergence times. In contrast to mainstream Multi Agent
Reinforcement Learning (MARL) research, PL is typically
applied to speeding up the convergence of single agent RL
problems, rather than examining competitive or cooperative
strategies and emergent behaviour as in MARL. PL agents
typically influence each other’s behaviour by sharing infor-
mation, rather than the direct agent interactions that fre-
quently occur in MARL. This is because PL agents generally
learn in separate instances of the same problem, rather than
multiple agents learning in a single problem instance as is
common in MARL literature.

Here we present a novel variant of Parallel Reinforcement
Learning, which uses Heterogeneous Agents. In our ap-
proach, multiple Slave agents with simplified action sets are
allowed to learn on the same problem in parallel for a short
pre-training period, and their combined experience is trans-
ferred to a Master agent which then learns on the full state
action space. We test our approach against a standard Q-
Learning agent on a variety of deterministic gridworld prob-
lems, and prove its efficacy with respect to learning speeds
and quality of policy learned. These tests are repeated up
to 1000 times to ensure that the results presented are both
consistent and repeatable.

This paper will make a contribution in the following ways:
1) a novel Parallel Reinforcement Learning approach using
Heterogeneous Agents is presented; 2) we prove experimen-
tally that the proposed method improves learning speed
while also reaching a better solution than a standard sin-
gle learning agent approach in the training time given; 3)
we analyse the effect of different amounts of pre-training on
the performance of our algorithm across a range of prob-
lem dimensions; 4) we discuss the future direction of this
research topic and the wider implications for RL research.



In the next section of this paper we examine previous
related research, while in the third section we outline our
Parallel Learning with Heterogeneous Agents approach. We
then define our experimental procedure, which is followed
by our experimental results. Our paper concludes with a
discussion of our experimental findings and our plans to de-
velop this work further in the future.

2. RELATED RESEARCH

2.1 Reinforcement Learning
Reinforcement Learning has become an increasingly popu-

lar Machine Learning technique in recent years, and has been
applied successfully to a wide range of problem domains be-
sides those mentioned above. Typically, an RL agent is sit-
uated in an environment, and learns how to behave through
a process of reward and punishment. The agent usually has
no prior knowledge about the environment into which it has
been deployed. Each action selected by the learner receives
a corresponding scalar reward signal from the environment,
which depends on the previous and resultant environmen-
tal states. Actions that increase the utility of the system
state are rewarded with a positive reward, while poor action
choices would generally receive a negative reward. Thus, it
is crucial to design an appropriate reward function for the
application domain, as the goal of the RL agent is to max-
imise the reward received during its lifetime.
These problems are typically formulated as a Markov De-

cision Process (MDP), which has become the standard ap-
proach when defining problems that involve learning sequen-
tial decision making [18]. MDPs may be modelled using a
set of states S, set of actions A, reward function R, and a
transition function T [12]. Thus the full MDP is formulated
as a tuple < S,A, T,R >. Selecting an action a ∈ A in a
given state s ∈ S will result in the environment entering a
new state s′ ∈ S with probability T (s, a, s′) ∈ (0,1), and
give a reward r = R(s, a, s′).
There are two main categories of RL algorithms: model-

based (e.g. Dyna, Prioritised Sweeping), and model-free
(e.g. Q-Learning, SARSA). Model-based approaches require
the transition function T to be known or learned for success-
ful implementation [18], whereas this is not a requirement
for model-free approaches. Model-free approaches instead
sample the underlying MDP directly in order to gain knowl-
edge about the unknown model.
In the model-free paradigm, the learner faces the problem

of the exploration/exploitation dilemma, especially when it
has no prior knowledge about its environment. A balance
must be struck between exploration of new actions, and ex-
ploitation of known good actions. Too little exploration
means that the agent may converge to a sub-optimal pol-
icy, while too much exploration means that the agent never
gets to exploit the knowledge it has learned, resulting in
poor performance. Several action selection strategies have
been developed to manage this trade-off, including ϵ-greedy
and Boltzmann (softmax).
Q-values represent the expected reward for selecting an

action a while in a certain state s, and may be represented
discretely in the form of a matrix, or by using a Q Function
Approximation approach.
Among the numerous model-free approaches, two of the

most commonly used include Q-Learning, and SARSA. Q-
Learning is an off-policy learning algorithm which has been

proven to converge to the optimum action-values with prob-
ability 1 so long as all actions are repeatedly sampled in
all states and the action-values are represented discretely
[17]. In Q-Learning, the Q values are updated according to
Equation 1 below:

Qt+1(st, at) = Qt(st, at)+α(rt+γmax
a

(st+1, a)−Qt(st, at))

(1)
In the above equation, the learning rate α ∈ [0, 1] is an

input parameter that determines the rate at which Q values
are updated at each time step t. The discount factor γ ∈
[0, 1] controls how the agent regards future rewards. A low
value of γ results in an agent that is myopic, whereas a high
value of γ means that the learner is more forward looking.

2.2 Parallel Reinforcement Learning
Kretchmar [7] describes a Parallel Reinforcement Learning

(PRL) approach, whereby multiple agents learn in parallel
on the same single agent RL task while sharing experience.
Kretchmar tested his PRL implementation using a multi-
armed bandit problem, with different numbers of agents
learning in parallel. The results presented demonstrated
that the PRL approach outperformed a single learner, and
using additional parallel learners decreased the time taken
to converge to the optimal control policy.

A comparative study of three different PRL implementa-
tions was published by Kushida et al. [8]. Two of the im-
plementations tested were based on Q-Learning, while the
third was based on fuzzy Q-Learning. The apporaches were
tested on a gridworld problem, and the authors observed
a clear benefit due to multiple agents learning in parallel
compared to a single learner.

Grounds and Kudenko [4, 5] presented an approach which
solves single agent RL tasks in parallel on a Beowulf clus-
ter. They based their approach on SARSA, where learners
share value function estimates which are represented by lin-
ear function approximators. By making use of the Message
Passing Interface, agents asynchronously transmit messages
containing their learned weight values. Experiments con-
ducted by the authors proved that the time taken to com-
pute good policies in single agent learning tasks can be re-
duced by applying PRL.

Li and Schuurmans [9] present several learning algorithms
which are set up to execute in parallel and make use of the
MapReduce framework. Parallel versions of dynamic pro-
gramming, temporal difference and gradient temporal dif-
ference methods were presented.

Barrett et al. [2] developed a parallelised version of Q-
Learning tailored for cloud resource allocation applications.
This model-free algorithm was benchmarked against a single
learning agent approach, and the authors found that the
time taken to learn good policies was greatly reduced by
parallelising the learning process.

A parallel framework for Bayesian Reinforcement Learn-
ing is described by Barrett et al. [1, 3]. In this model-based
RL approach, agents learn state transition probabilities for
a given problem domain without any prior knowledge. PRL
agents learn in parallel on the same task, while sharing prob-
ability density estimates amongst each other. The goal of
this approach is to speed up convergence. The authors test
their approach using two different scenarios: a stochastic
gridworld problem domain, and a cloud virtual machine al-



location problem which uses real world user demand data.
The authors prove empirically that their proposed approach
significantly improves convergence times in both test scenar-
ios compared to a single agent learning on the same task,
and use Kullback-Liebler Divergence as a performance met-
ric. The benefits of the proposed PRL approach were also
shown to scale well when additional PRL agents were added.
A Parallel Reinforcement Learning algorithm for Traffic

Signal Control was proposed by Mannion et al. [11]. In this
framework, multiple Q-Learning agents learn in parallel on
separate instances of the same Traffic Signal Control prob-
lem while sharing experience, with the goal of improving
learning speed and exploration. The authors tested their
algorithm against a single learning agent on three Traffic
Signal Control problems of varying complexity, and found
that their PRL approach increased learning and exploration
rates when compared to the single agent approach.
Despite promising results published by several authors

using Parallel Reinforcement Learning approaches, surpris-
ingly little research has been published in this area to date.
In general, these new PRL approaches were tested using ab-
stract problem domains, apart from Mannion et al. [11] and
Barrett et al. [1, 2, 3], who also consider applications of
PRL to complex real world problems.

3. PARALLEL REINFORCEMENT LEARN-
ING USING HETEROGENEOUS AGENTS

In this section, we describe our Parallel Reinforcement
Learning using Heterogeneous Agents (PRL-HA) approach.
PRL-HA is unique compared to the approaches described
above, in that it is proposed primarily as a method of learn-
ing experience to be transferred later to a single agent.
Typically in PRL literature, multiple agents are used to

solve the same single agent RL problem. In PRL-HA, we aim
to learn some approximate knowledge about the problem us-
ing multiple simple learners in parallel, and use this expe-
rience to initialise the Q-Values of another superior agent.
Thus, our proposed approach could be considered to be a hy-
brid between Parallel Learning and Transfer Learning (TL).
Research in Transfer Learning typically involves transferring
learned experience between agents learning on different but
related problems (see e.g. [15]), and has much in common
with our proposed approach, in that the goal of both PRL-
HA and TL is to improve the performance of a learner by
initialising its Q-Values at the start of a task. In the case
of PRL-HA, the experience transferred is collected by mul-
tiple inferior agents, for later use by a superior agent while
learning on the same problem.
Our architecture consists of a single Master agent, and

multiple Slave agents. These slave agents are diverse, in
that each may only learn on a specific subset of the state
action space. Both types of agents used in our architecture
are based on Q-Learning.
Agents make their action selections using the ϵ-greedy

strategy, where a random action is chosen with probabil-
ity ϵ, or the action with the best expected reward is chosen
with the remaining probability 1 − ϵ. For all agents in our
experiments, the value of ϵ is set to 0.05. This value pro-
motes exploitation of the knowledge the agent has gained,
but still allows for some exploration.
We decompose the problem, by splitting the action set

into multiple sub action sets, where each Slave agent learns

Figure 1: Multiple Slave Agents learn in parallel on
the same problem, and their experience is combined
into a Global Q Matrix

using a different action set. The Slave agents are initially
allowed to learn in parallel on the problem for a short dura-
tion, which we call the pre-training period. Each Slave agent
learns on its own instance of the problem domain, and takes
responsibility for acquiring knowledge about a specific sub-
set of the state action space.

This initial approximate knowledge is transferred from the
Slave agents into a global Q values matrix, as shown in Fig-
ure 1 above. Once the pre-training period is complete, the
values stored in the global Q values matrix are transferred
to the Master agent. Thus, PRL-HA may also be considered
to be a form of Transfer Learning.

The Master agent then learns on the problem for the full
duration using the complete action set, and may draw on
the experience transferred from the simple Slave agents to
aid its action selection choices. In effect, quite a lot of the
required exploration has already been done for the Master
agent when it begins learning on the problem.

The Slave agents are essentially incapable of solving the
problem by themselves, e.g. for a 10 x 10 version of the
gridworld problem presented in the next section, any one
Slave agent has about a 9% chance of being able to reach
the goal state in an episode. The chance of an individual
Slave agent reaching the goal state in gridworld during a
given episode becomes lower as the dimensionality of the
problem increases.

The purpose of these Slave agents is not to solve the prob-
lem - rather they are used for very focused exploration. Each
slave agent has the responsibility of exploring a specific sub-
set of the state action space, with the goal being to get
enough approximate knowledge during the pre-training pe-
riod to benefit the Master agent when it begins to learn on
the full state action space.

In the next section, we prove empirically that knowledge
from these simple Slave agents can be combined into a coher-
ent whole, and used successfully by a more complex Master
agent which learns on the full state action space of the prob-
lem.

When applying PRL-HA to a problem, it is up to the de-
signer to choose an appropriate method of sub-dividing the
state action space, the choice of which will necessarily be
highly domain specific. The subset of the state action space



Figure 2: An n-dimensional gridworld problem,
showing the start state (s0) and goal state (sg)

that each agent learns on needs to be defined using knowl-
edge of the specific problem structure, as random division
of portions of the state action space among Slave agents is
unlikely to work well in all but the most simple problem
domains. The requirement for domain specific knowledge
from the system designer leads to interesting comparisons
between our work and other areas of Reinforcement Learn-
ing research e.g. Reward Shaping. In Reward Shaping, the
system designer guides the action selection choices of a sin-
gle learning agent directly using domain specific knowledge
(see e.g. Grzes and Kudenko [6]). By contrast, in PRL-HA
domain specific knowledge is used in deciding which areas
of the state action space will be assigned to individual Slave
agents to explore.

4. EXPERIMENTAL DESIGN
As an initial empirical proof of the efficacy of our proposed

approach, we have tested it on a series of experiments based
on a deterministic gridworld. We focus here on demonstrat-
ing that our PRL approach can increase learning rates, while
also improving the policy learned when compared to a stan-
dard Q-Learning agent.
Figure 2 shows a general case of the deterministic grid-

world problem domain. The dimension of the gridworld n
specifies the number of cells in the x and y dimensions. Each
cell is considered to be a discrete environmental state, with
the total size of the state space S equal to n2. A state s is
expressed as a vector containing the x and y coordinates of
the cell in question, shown in Equation 2 below:

s =
[
x, y

]
(2)

For the purposes of storing and retrieving Q values, a
mixed radix conversion is used to represent a state vector as

a single number. Each state receives a unique number under
this scheme, which is used as a key for the relevant data in
the Q values table.

An agent may only occupy a single state on the grid at
any particular time. The agent starts at an initial state s0,
and must navigate its way to a goal state sg. The gridworld
episode ends once the goal state is reached. If the goal state
has not been reached after 2000 moves, the current episode
is ended and the gridworld is reset.

At the beginning of each episode, the start state s0 is ran-
domly selected. The location of the goal state is also ran-
domly selected at the beginning of each experimental run.
The agent is not allowed to start at the goal state, so s0 is
randomly selected until s0 ̸= sg.

There are eight possible actions allowed in the gridworld:
move North, North East, East, South East, South, South
West, West, or North West. The complete action set A
allowed in the gridworld is defined in Equation 3 below:

A = { N, NE, E, SE, S, SW, W, NW } (3)

Each action chosen by an agent in the gridworld may re-
sult in one of two possible special outcomes: reaching the
goal state, or moving off the grid. If an agent’s action choice
takes it to the goal state, a reward equal to n2 is given and
the gridworld episode is ended. If the resultant state is out-
side the gridworld, the agent is moved back to its previous
position and given a reward of −2. All other possibilities
apart from these special cases are given a reward of -1. For-
mally, the reward received by an agent for selecting action a
in state s and transitioning to a resultant state s′ is defined
according to Equation 4 below:

R(s, a, s′) =


n2 s′ = sg

−2 s′ /∈ S

−1 otherwise

(4)

To apply our PRL-HA approach to this problem domain,
we use four Slave agents. Each one of these agents learns on
a different subset of the state action space, with each having
a limited action set. We define these action sets A1, A2, A3

and A4 formally in Equations 5 to 8 below. Each of the four
Slave agents has a different set of two possible movement
choices: North South, North-East South-West, East West,
and South-East North-West.

A1 = { N, S } (5)

A2 = { E, W } (6)

A3 = { NE, SW } (7)

A4 = { SE, NW } (8)

The Slave agents are allowed to learn on the problem for a
certain pre-training duration, and the combined experience
of these Slave agents is transferred to the Master agent. The
Master agent then learns on the full state action space, and
is used to evaluate the effectiveness of our approach in this
problem domain.



Figure 3: No. of Moves to Goal, 5x5 Gridworld

Figure 4: No. of Moves to Goal, 10x10 Gridworld

Our PRL-HA approach is evaluated using six different di-
mensions of the gridworld: n = 5, n = 10, n = 15, n =
20, n = 25, and n = 30. For each dimension of the grid-
world, we test our PRL-HA approach against a single stan-
dard Q-Learning agent. This reference agent is the same in
all respects as the Master agent mentioned above, except
that it does not recieve any experience transfer, and its Q
values are thus initialised to all zeroes.
We consider 4 different pre-training durations for the PRL-

HA algorithm: 100, 200, 400 and 600 episodes. This gives a
total of 30 experiments, which are each run for 1000 episodes.
The results presented for n = 5 and n = 10 are the average
of 100 runs. The multitude of possible locations of s0 and sg
at n ≥ 15 introduce extra variability into the performance of
the agents, so we take the average of 1000 runs in these cases
to ensure accuracy and repeatability. The learning rate α
and the discount factor γ are set to 0.05 and 0.9 respectively
for all agents used in our experiments. Table 1 summarises
all of the values used in our experiments.

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

Our experimental results are presented in Figures 3 to 8
and in Table 2 below. Figures 3 to 8 plot the number of

Figure 5: No. of Moves to Goal, 15x15 Gridworld

Figure 6: No. of Moves to Goal, 20x20 Gridworld

moves taken to reach the goal state for the different grid-
world dimensions tested. The lines plotted on these figures
are the moving average of 10 points to improve clarity.

Table 2 summarises the results of all 30 experiments that
were conducted, comparing the average number of moves
to goal over the final 100 episodes for each test, as well as
the percentage reduction in number of moves taken to reach
the goal state when using PRL-HA compared to a standard
Q-Learning agent.

Figure 9 plots the percentage reduction in moves to goal
versus the gridworld dimension n for each pre-training dura-
tion considered. In general, it can be seen that our PRL-HA
approach offers a clear advantage in terms of learning speed
and quality of policy learned versus a standard Q-Learning
agent, regardless of the number of pre-training episodes.

With respect to learning speeds, it is interesting to note
the differences between the reference single agent and PRL-
HA. In each gridworld test, we see that the reference agent
initially converges more quickly than PRL-HA until they
both reach a similar level of performance. After this point is
reached, PRL-HA converges more quickly in almost all cases.
The duration of this initial lag in the PRL-HA approach is
typically of the order of 100 to 250 episodes, depending of
course on the dimensionality of the problem and the amount



Table 1: Summary of Experimental Parameters

Parameter Value(s) Used

Learning rate, α 0.05
Discount factor, γ 0.90
ϵ 0.10
Max. moves per episode 2000
Testing episodes 1000
Number of runs 100 (n < 15), 1000 (n ≥ 15)
Pre-training episodes 100, 200, 400, 600
Gridworld dimension, n 5, 10, 15, 20, 25, 30

of pre-training allowed. We hypothesise that during this ini-
tial lag period the Master agent must assimilate the expe-
rience transferred to it into a coherent whole, and correct
any contradictory information learned by the 4 slave agents.
This lag period appears to occur consistently on all prob-
lem dimensions, and it would be interesting to analyse this
phenomenon on a more challenging problem domain than
gridworld in the future.
By considering the plot of percentage reduction in moves

to goal versus the gridworld dimension n in Figure 9, we
can gain some insight into the most appropriate pre-training
durations to select for different gridworld sizes. At n = 5,
there is a clear benefit to having either 100 or 200 episodes
of pre-training, whereas 400 and 600 episodes are actually
not as effective. However, this is a very simple problem (25
states in total), so it is obvious in this case that too much
pre-training may actually be detrimental to the learner’s
performance, resulting in more incorrect information being
learned compared to 200 episodes of pre-training. Even so,
every duration of pre-training tested for the n = 5 case still
produced better results than the reference agent.
We begin to see more significant results at n = 10, which

has 4 times as many states as n = 5. Here the benefits of
PRL-HA begin to really show, with each increase in pre-
training time delivering a corresponding decrease in aver-
age number of moves to goal. This trend continues for the
other values of n, and we can say that in general, more pre-
training time leads to a faster rate of learning and a better
final learned policy in our experiments. During our experi-
mentation, we found that setting the number of pre-training
episodes to 10 times n allowed a significant boost in perfor-
mance (of the order of 8 to 10%) across all gridworld sizes
tested, without spending an excessively long time on pre-
training. Also, similar to the case with n = 5, there may
be an amount of pre-training which will produce the best
results for other problem domains, beyond which extra pre-
training would be detrimental to performance.
Our PRL-HA approach reduced the average number of

moves taken to sg in practically all cases, regardless of the
amount of pre-training given. The only exception to this
was on the n = 30 gridworld test, where PRL-HA with 100
episodes of pre-training took 0.55% more steps on average
to reach the goal state when compared with the reference
single learning agent.
This is not a very significant decline in performance, and

can be attributed to the fact that 100 episodes of pre-training
do not provide sufficient information for PRL-HA to show
any benefit when applied to the most complicated domain
used in our tests. However, doubling the number of pre-

Figure 7: No. of Moves to Goal, 25x25 Gridworld

Figure 8: No. of Moves to Goal, 30x30 Gridworld

training episodes to 200 for this value of n means that PRL-
HA performs nearly 4% better than the reference agent.
This highlights the fact that additional pre-training episodes
may be required in more complex problem domains for the
benefits of PRL-HA to become apparent.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described a novel variant of Parallel

Reinforcement Learning which makes use of Heterogeneous
Agents. Slave agents learn on a subset of the state action
space for a short pre-training period, after which their ex-
perience is transferred to a Master agent. Using a compre-
hensive suite of tests based on progressively more complex
gridworld problems, we have proven empirically that PRL-
HA consistently outperforms a standard single Q-Learning
agent, both in terms of learning rates and performance. The
results presented were averaged over up to 1000 runs to en-
sure their significance, accuracy and repeatability.

We have also investigated the effects of different amounts
of pre-training on PRL-HA, showing that even a low num-
ber of pre-training episodes is generally sufficient to give an
improvement in performance versus a standard single agent
learner. Furthermore, we demonstrated that higher gains
can be achieved by increasing the number of pre-training



Figure 9: Percentage Reduction in No. of Moves
to Goal vs. Gridworld Dimension n (Final 100
Episodes)

episodes, especially when this approach is applied to more
complex problems. Typically, improvements of up to 30%
in number of moves to goal are possible using PRL-HA, de-
pending on the problem dimensionality and the number of
pre-training episodes used. Our results demonstrate that
preliminary exploration of an environment with a set of in-
ferior heterogeneous agents may be useful when their knowl-
edge is transferred to a superior agent learning in the same
problem domain.
The approach that we have presented is based on Q-Learning,

but the basic principles of PRL-HA should also be effective
when used with other Reinforcement Learning algorithms,
both model-based and model-free. Accordingly, we intend to
test this method further by substituting different RL algo-
rithms in place of Q-Learning. It would also be interesting to
investigate the effect of using function approximation with
PRL-HA in place of full state representation as used in this
paper.
While we have tested PRL-HA on a simple deterministic

gridworld problem here as a proof of concept, in future we
plan to test our approach on more complex problem domains
that are not deterministic. Advanced application areas for
PRL-HA that we are currently investigating include urban
traffic signal control and cloud resource allocation problems.
As we discussed earlier, sub-dividing the state action space
among Slave agents is an essential part of this algorithm.
The division of the state action space is straightforward in
the gridworld problems used in this paper, but this will not
be the case when moving to more complex problem domains.
Thus, one of the main difficulties of applying PRL-HA to
these difficult problems is deciding how best to sub-divide
the state action space, and it is unlikely that simple ap-
proaches like random allocation of action subsets to Slave
agents will be effective. Rather, a carefully considered di-
vision of the state action space will have to be developed
for each application area. We expect that PRL-HA will be
effective when applied to problems with large state action
spaces once appropriate state action space sub-divisions are
discovered.
Another factor that could be explored in the future is

the effect of varying the numbers of Slave agents used for

Table 2: Summary of Experimental Results (Aver-
age over Final 100 Episodes)

Exp. n Pre-Training No. Moves % Reduction

1 5 - 3.40 -
2 5 100 ep. 3.24 4.60 %
3 5 200 ep. 2.87 15.15 %
4 5 400 ep. 3.19 6.26 %
5 5 600 ep. 3.31 2.51 %

6 10 - 19.29 -
7 10 100 ep. 16.90 12.41 %
8 10 200 ep. 16.08 16.62 %
9 10 400 ep. 14.96 22.46 %
10 10 600 ep. 14.33 25.72 %

11 15 - 68.93 -
12 15 100 ep. 62.54 9.26 %
13 15 200 ep. 58.27 15.47 %
14 15 400 ep. 50.53 26.68 %
15 15 600 ep. 45.69 33.71 %

16 20 - 154.67 -
17 20 100 ep. 146.47 5.30 %
18 20 200 ep. 140.77 8.99 %
19 20 400 ep. 127.93 17.29 %
20 20 600 ep. 111.86 27.68 %

21 25 - 277.42 -
22 25 100 ep. 272.12 1.91 %
23 25 200 ep. 260.62 6.06 %
24 25 400 ep. 232.50 16.19 %
25 25 600 ep. 215.37 22.37 %

26 30 - 442.56 -
27 30 100 ep. 445.02 -0.55 %
28 30 200 ep. 425.73 3.81 %
29 30 400 ep. 395.25 10.69 %
30 30 600 ep. 354.33 19.94 %

pre-training. In all of the experiments in this paper, we
used 4 Slave agents during the pre-training phase. For any
application domain, there may be an optimum number of
Slave agents to use, or an optimum number of divisions to
make in the state action space, and this will need to be
considered in future work on this topic.

7. ACKNOWLEDGMENTS
The primary author would like to acknowledge the finan-

cial support provided to him by the Irish Research Council,
through the Government of Ireland Postgraduate Scholar-
ship Scheme.

8. REFERENCES
[1] E. Barrett, J. Duggan, and E. Howley. A parallel

framework for bayesian reinforcement learning.
Connection Science, 26(1):7–23, Jan. 2014.

[2] E. Barrett, E. Howley, and J. Duggan. Applying
reinforcement learning towards automating resource
allocation and application scalability in the cloud.
Concurrency and Computation: Practice and
Experience, 25(12):1656–1674, 2013.

[3] E. Barrett, E. Howley, and J. Duggan. Parallel
bayesian model learning. In Proceedings of the



Adaptive and Learning Agents workshop (at AAMAS
2013), May 2013.

[4] M. Grounds and D. Kudenko. Parallel reinforcement
learning with linear function approximation. In
Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems,
AAMAS ’07, pages 45:1–45:3, New York, NY, USA,
2007. ACM.

[5] M. Grounds and D. Kudenko. Parallel reinforcement
learning with linear function approximation. In
K. Tuyls, A. Nowe, Z. Guessoum, and D. Kudenko,
editors, Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning, volume 4865 of
Lecture Notes in Computer Science, pages 60–74.
Springer Berlin Heidelberg, 2008.

[6] M. Grzes and D. Kudenko. Learning potential for
reward shaping in reinforcement learning with tile
coding. In Proceedings of the Adaptive Learning
Agents and Multi-Agent Systems workshop (at
AAMAS 2008), May 2008.

[7] R. M. Kretchmar. Parallel reinforcement learning. In
The 6th World Conference on Systemics,
Cybernetics,and Informatics, Orlando, FL., 2002.

[8] M. Kushida, K. Takahashi, H. Ueda, and T. Miyahara.
A comparative study of parallel reinforcement learning
methods with a pc cluster system. In Intelligent Agent
Technology, 2006. IAT ’06. IEEE/WIC/ACM
International Conference on, pages 416–419, Dec 2006.

[9] Y. Li and D. Schuurmans. Mapreduce for parallel
reinforcement learning. In S. Sanner and M. Hutter,
editors, Recent Advances in Reinforcement Learning,
volume 7188 of Lecture Notes in Computer Science,
pages 309–320. Springer Berlin Heidelberg, 2012.

[10] P. Mannion, J. Duggan, and E. Howley. An
experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In
A. Kotsialos, F. Kluegl, L. McCluskey, J. P. Mueller,
O. Rana, and R. Schumann, editors, Autonomic Road
Transport Support Systems, Autonomic Systems.
Birkhauser/Springer, 2015 (in press).

[11] P. Mannion, J. Duggan, and E. Howley. Parallel
reinforcement learning for traffic signal control. In
Proceedings of the 4th International Workshop on
Agent-based Mobility, Traffic and Transportation
Models, Methodologies and Applications (ABMTRANS
2015), June 2015 (in press).

[12] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1994.

[13] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu.
Keepaway soccer: From machine learning testbed to
benchmark. In I. Noda, A. Jacoff, A. Bredenfeld, and
Y. Takahashi, editors, RoboCup-2005: Robot Soccer
World Cup IX, volume 4020, pages 93–105.
Springer-Verlag, Berlin, 2006.

[14] M. E. Taylor, N. Carboni, A. Fachantidis, I. Vlahavas,
and L. Torrey. Reinforcement learning agents
providing advice in complex video games. Connection
Science, 26(1):45–63, 2014.

[15] M. E. Taylor and P. Stone. Behavior transfer for
value-function-based reinforcement learning. In
F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P.

Singh, and M. Wooldridge, editors, The Fourth
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 53–59, New York, NY,
July 2005. ACM Press.

[16] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 330–337, Honolulu, HI,
May 2007.

[17] C. Watkins and P. Dayan. Technical note: Q-learning.
Machine Learning, 8(3-4):279–292, 1992.

[18] M. Wiering and M. van Otterlo, editors.
Reinforcement Learning: State-of-the-Art. Springer,
2012.


