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ABSTRACT
The development of Adaptive Traffic Signal Control strate-
gies for efficient urban traffic management is a major chal-
lenge faced by traffic engineers today. Reinforcement Learn-
ing (RL) has been shown to be a promising approach when
applied to traffic signal control (TSC) problems. When us-
ing RL agents for TSC, difficulties may arise with learning
speed and performance due to the high dimensionality of the
state action space.
Potential-Based Advice is an emerging technique in RL lit-

erature, where learners are advised using knowledge specific
to the problem environment. Previous works have shown
this to be a promising approach, which can increase learn-
ing speed and improve an agent’s performance. Up to now,
Potential-Based Advice has mainly been tested on abstract
problem domains. In this work, we apply Potential-Based
Advice to a complex, real-world problem domain.
We extend previous work on RL for TSC by incorporating

Potential-Based Advice based on heuristic knowledge rele-
vant to the problem domain. We prove experimentally that
the proposed method speeds up learning, and reduces de-
lay times and queue lengths compared to a standard RL
approach without advice.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement Learning, Potential-Based Advice, Multi Agent
Systems, Intelligent Transportation Systems, Adaptive Traf-
fic Signal Control, Smart Cities

1. INTRODUCTION
Traffic congestion is one of the major issues currently faced

by modern cities. The many negative environmental, social
and economic consequences of urban traffic congestion are
well documented. High vehicle usage rates, along with the
lack of space and public funds available to construct new
transport infrastructure add to the significant challenges
currently faced by traffic engineers. Against this backdrop,
it is now necessary to develop intelligent and economical so-
lutions to improve the quality of service for road users.

One relatively inexpensive way to alleviate the problem is
to ensure optimal use of the existing road network, e.g. us-
ing Adaptive Traffic Signal Control (ATSC). Continued im-
provements in ATSC will have an important part to play in
the future development of Smart Cities, especially in light of
the current EU-wide emphasis on the theme of Smart, Green
and Integrated Transport in Horizon 2020 [1]. Developing
ATSC strategies for efficient urban traffic management is a
challenging problem, and one which is not easily solved.

In recent years, several Artificial Intelligence (AI) methods
such as Fuzzy Logic, Neural Networks, Genetic Algorithms
and Reinforcement Learning have all been applied success-
fully to traffic control problems. These developments co-
incide with an increasing interest among researchers in the
broader field of Intelligent Transportation Systems (ITS).
The approach that we present in this paper is based on Re-
inforcement Learning (RL), a field that has many potential
applications in the ITS area. RL algorithms have also been
applied to other complex control problems besides ATSC,
including air traffic control (see e.g. [21]).

In Reinforcement Learning for Traffic Signal Control (RL-
TSC), each intersection is typically controlled by a single au-
tonomous agent. Each agent has the responsibility of deter-
mining the light switching sequence at its assigned intersec-
tion, and learns a control policy by a process of continuous
interaction with its environment. A network of traffic signal
control agents may be considered as a Multi Agent System.
This opens up possibilities in relation to agent coordination
strategies to reach a global rather than local optimum.

RL-TSC approaches offer many benefits; RL agents have
the capability to learn online to continuously improve their
performance and thus adapt readily to changes in traffic
demand patterns, and are capable of dealing with the in-
complete information and stochastic nature inherent in this
problem domain. Traffic control problems are a very at-
tractive testbed for emerging RL approaches [5], because
they present a number of interesting challenges such as de-
veloping strategies for coordination and information sharing
between individual agents. Work by numerous authors has
demonstrated that Reinforcement Learning is a promising
approach for urban traffic signal control applications (e.g.
[3, 7, 11, 16, 20]). The complexity and uncertainty of traffic
signal control problems make them an extremely interesting
application area for AI researchers to investigate.

The number of possible state action combinations for com-
plex intersections with many phases present a significant
challenge when applying RL to traffic signal control. RL
literature refers to this problem as the Curse of Dimension-



ality. As RL agents are presented with increasingly complex
problems, convergence times and the quality of the policy
learned tend to degrade. When dealing with very large
state action spaces, it may not be possible for the agent
to visit each state action pair sufficiently often to learn a
good policy within a reasonable timeframe. In general, as
the problem complexity is increased an agent will require
more experience in order to learn a good policy, which ne-
cessitates more training time. Potential-Based Advice is an
emergent paradigm within RL that has been developed in
recent years, which has the potential to help mitigate against
the problems described above, by improving both learning
speed and performance. Potential-Based Advice allows the
designer to impart domain specific knowledge to the agent,
in the form of a potential function. This knowledge can then
guide the agent’s actions in the environment.
The contributions of this research paper are as follows: 1)

we extend previous works on RL-TSC by designing a Traffic
Signal Control agent that learns guided by heuristic Look-
Ahead Advice; 2) we prove experimentally that the proposed
approach improves learning speeds on complex intersections
and improves the quality of the policy learned compared to
an agent without advice; 3) we identify and discuss specific
issues that need to be taken into account when applying
Potential-Based Advice to this difficult problem domain; 4)
we discuss the future direction of this research topic and the
wider implications for both ATSC and RL researchers.
The remainder of this paper is structured as follows: the

second section discusses related research, while the third sec-
tion describes our proposed approach. The following section
details the design of our experimental set up, after which we
present our experimental results. Finally, we conclude by
discussing our findings and our plans for future work.

2. RELATED RESEARCH

2.1 Reinforcement Learning
Reinforcement Learning is an area within Machine Learn-

ing which has received considerable attention from AI re-
searchers. RL agents are deployed into an environment,
about which they generally have no prior knowledge. In-
stead, an RL agent must learn how to behave by a process
of continuous interaction with its environment. The agent
receives a scalar reward signal r based on the outcomes of
previously selected actions, and by examining stored esti-
mates for r for each state action pair the agent can decide
which action to select when in a particular state. This re-
ward signal can be either negative or positive, and a properly
designed reward function will allow the agent to iteratively
learn an optimal or near optimal control policy. The esti-
mates for r are referred to as Q values, which are generally
stored in a matrix. A balance must be struck between ex-
ploiting known good actions and exploring the consequences
of new actions, and the ultimate goal of the agent is to max-
imise the reward received during its lifetime.
Markov Decision Processes (MDPs) are considered the de

facto standard when formalising problems involving learning
sequential decision making [23], and thus RL problems are
generally modelled as an MDP. An MDP consists of a reward
function R, set of states S, set of actions A, and a transi-
tion function T [17], i.e. a tuple < S,A, T,R >. Selecting an
action a ∈ A when in a state s ∈ S, will result in the environ-
ment transitioning into a new state s′ ∈ S with probability

T (s, a, s′) ∈ (0,1), and give a reward r = R(s, a, s′).
Two broad categories of RL algorithms exist: they are

either model-based (e.g. Dyna, Prioritised Sweeping), or
model-free (e.g. Q-Learning, SARSA). In the case of model-
based approaches, it is necessary to know the transition
function T for successful implementation [23]. This may be
problematic, considering that T may be difficult or even im-
possible to determine in complex problem domains. Model-
free approaches do not have this requirement, and instead
they rely on sampling the underlying MDP in order to gain
knowledge about the unknown model. This means that ex-
ploration is necessary for a model-free learner in order to
gain the required knowledge about its environment, and the
exploration vs exploitation dilemma discussed above must
be balanced appropriately. The ϵ-greedy action selection
strategy is an example of an approach commonly used to
obtain the required balance.

Two model-free RL algorithms which are commonly used
are Q-Learning, and SARSA. Q-Learning is an off-policy,
model-free learning algorithm that has been frequently used
in RL-TSC literature, e.g. [3, 9, 10, 11]. Q-learning has
been proven to converge to the optimum action-values with
probability 1 so long as all actions are repeatedly sampled
in all states and the action-values are represented discretely
[22]. In Q-Learning, Q values are updated according to the
equation below:

Qt+1(st, at) = Qt(st, at)+α(rt+γQmaxa(st+1, a)−Qt(st, at))
(1)

Here the learning rate α ∈ [0, 1] determines by how much
Q values are updated at each time step t. The discount fac-
tor γ ∈ [0, 1] controls how the agent regards future rewards.
A low value of γ results in an agent which is myopic, while
higher values of γ make the agent more forward looking.

2.2 Incorporating Domain Knowledge
In Knowledge-Based RL, domain knowledge is incorpo-

rated to guide the agent in its action selection choices. De-
signers often have some knowledge about the problem do-
main, which can be used to speed up learning. Typically,
RL agents begin learning with their Q-values initialised to
zeroes, random numbers, or pessimistic/optimistic values.
One of the simplest methods to incorporate domain knowl-
edge is by Value Function Initialisation, where the Q-values
are initialised in a meaningful way, rather than arbitrarily.

Reward Shaping is a promising and well studied approach
which has been used successfully to speed up learning in both
single and multi agent learning tasks. To use Reward Shap-
ing, the designer adds an additional reward to the reward
received from the environment. Reward Shaping generally
takes the form below, where R is the environment reward, F
is the shaping reward, and R′ is the combined reward signal.

R′ = R+ F (2)

While this technique is easily implemented and has been
used successfully, care must be taken when designing the
shaping reward to avoid undesired behaviour. A classic ex-
ample of undesired effects due to reward shaping is shown
by Randløv and Alstrøm [18], where an RL agent learns to
ride a bicycle towards a goal. An additional shaping term
was added to the reward function to encourage the agent to
stay balanced. However, when poorly designed this shaping
function caused the agent to converge to a policy where it



cycled in circles continuously to keep collecting the shaping
reward, and never actually reached the goal state.
Potential-Based Reward Shaping (PBRS) was proposed

by Ng et al. [15], in an attempt to overcome the prob-
lems with standard reward shaping approaches. When us-
ing PBRS, each possible system state has a certain poten-
tial, which allows the designer to express a preference for
the agent to reach certain system states. The additional
shaping reward F is defined as follows in Potential-Based
Reward Shaping:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where Φ is the potential function which maps states to po-
tentials, and γ is the same discount factor used in the agent’s
Q update rule. Potential-Based Reward Shaping as defined
by Ng et al. [15] has been proven not to alter the optimal
policy of a single agent. Interestingly, Wiewieora [24] has
proven that an agent learning with Potential-Based Reward
Shaping and Q-values initialised to zero behaves the same
as an agent learning without shaping whose Q-values have
been initialised with Φ. PBRS is ideal for problems where
an agent must reach a specific goal state (e.g. Gridworld,
Mountain Car, etc.), where relatively simple potential func-
tions can give a large increase in learning speed.
However, PBRS can only express a designer’s preference

for an agent to be in a certain state, and therefore cannot
make use of domain knowledge that recommends actions.
Wiewieora et al. [25] propose an extension to PBRS called
Potential Based Advice (PBA), that includes actions as well
as states in the potential function. The authors propose
two methods of PBA: Look-Ahead Advice and Look-Back
Advice. The former method defines the additional reward
received F as follows:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (4)

Wiewieora et al. [25] have provided a proof of policy in-
variance for Look-Ahead Advice for single agent learning
scenarios. No corresponding proof has been provided for
Look-Back Advice, although empirical results suggest that
this method also does not alter the optimal policy in single
agent learning scenarios. When using Look-Back Advice,
Wiewiora et al. recommend the use of an on-policy algo-
rithm such as SARSA. To maintain policy invariance when
using Look-Ahead Advice, the agent must choose the action
that has the maximum sum of both Q-value and potential:

π(s) = argmaxa(Q(s, a) + Φ(s, a)) (5)

Here π(s) is the agent’s policy in state s (the action that
will be chosen by the agent in state s).
Recent work by Devlin et al. [19] examined the use of

Potential-Based Reward Shaping and Potential-Based Ad-
vice in a Multi-Agent Reinforcement Learning (MARL) sce-
nario, based on RoboCup Soccer. They found that by incor-
porating heuristic knowledge agents could learn a joint pol-
icy in less time and with equal or better performance than
agents learning without this additional knowledge. How-
ever, the authors also found that the addition of shaping
rewards could modify the joint policy learned. While in this
paper we will consider only single agent learning problems,
this work on MARL problems with advice has implications
for any future works involving multiple traffic signal control

agents learning with advice.

2.3 Reinforcement Learning for Traffic Sig-
nal Control

Numerous authors have studied the application of Rein-
forcement Learning to Traffic Signal Control problems in the
last two decades, coinciding with an increased interest in ITS
among researchers. Thorpe [20] presents some of the earliest
work on RL-TSC, in which an approach based on SARSA
is presented. This algorithm was benchmarked against a
fixed time control scheme, and was found to offer significant
performance increases compared to the latter approach.

Brys et al. [7] observed in their experiments that the
objectives throughput and delay are correlated. They im-
plemented a Multi-Objective RL-TSC algorithm, where the
single objective reward signal is replaced with a scalarised
signal, which was a weighted sum of the reward due to both
objectives. They report that the proposed multi-objective
approach exhibits a reduced convergence time, as well as de-
creasing the average delay in the network when compared to
a single objective approach.

Abdoos et al. [3] developed an RL-TSC approach based
on Q-Learning using Tile Coding as a method of Function
Approximation. Their approach consists of an agent control-
ling each intersection, and these agents are grouped together
under the control of superior agents. This hierarchical ap-
proach was tested against a standard Q-Learning approach
on a 3 x 3 grid of intersections, and was found to reduce
delay times in the network.

Pham et al. [16] present an RL-TSC system based on
SARSA that also uses Tile Coding as a method of Function
Approximation. In contrast to the approach above, in this
system each SARSA agent is completely independent, and
Tile Coding is used as a method of approximating the value
function for the agent’s local states.

Dresner and Stone [8] suggest the use of RL in combina-
tion with their Autonomous Intersection Management ar-
chitecture. Here the intersection is treated as a marketplace
where vehicles pay for passage or pay a premium for pri-
ority, and the RL agent’s goal is to maximise the revenue
collected. Thus in future, revenue collected could be used in
reward functions for RL-TSC.

El-Tantway et al. [11] present a coordinated Multi Agent
RL-TSC architecture called MARLIN-ATSC. This is a model-
free architecture based on Q-Learning, where the state defi-
nition is based on queue length, and the reward definition is
based on Total Cumulative Delay. The system is tested on a
simulated network of 59 intersections in Downtown Toronto,
and outperformed the currently implemented real world con-
trol scheme, resulting in a reduction in average delay, aver-
age stop time, travel times, queue lengths and emissions.

Mannion et al. [14] proposed a Parallel Reinforcement
Learning algorithm for Traffic Signal Control. This frame-
work allows multiple agents to learn in parallel on separate
instances of the same TSC problem while sharing experience,
with the goal of improving learning speed and exploration.
The algorithm was tested on three intersections of varying
complexity, and was found to offer statistically significant
reductions in delay times and queue lengths as well as in-
creasing learning and exploration rates when compared to a
standard single agent approach.

For a more comprehensive review of the usage of learn-
ing agents in Traffic Signal Control, we refer the interested



reader to review papers published by Mannion et al. [13]
and Bazzan and Klugl [6].

3. LEARNING TRAFFIC SIGNAL CONTROL
WITH ADVICE

Traffic Signal Control presents a number of significant
challenges when compared with the abstract problem do-
mains (e.g. Gridworld) traditionally studied by RL researchers,
due to the high degree of complexity and stochastic be-
haviour exhibited. In the simplest 2 Phase Traffic Signal
Control scenario we consider, the number of possible dis-
crete system states is of the order of 1.8 × 104, rising to
approx. 8 × 105 states for the 3 Phase case. By contrast,
a typical 50 × 50 Gridworld experiment has only 2.5 × 103

states. Traffic Signal Control is a continuous optimisation
problem with no terminal goal state, whereas many tradi-
tional abstract problem domains have a goal state that the
agent must reach.
The scale of transportation networks and the number of

independent entities involved mean that an RL agent cannot
possibly keep track of every detail about the environment
state; therefore these problems are classified as Partially Ob-
servable Markov Decision Processes. Actions in Traffic Sig-
nal Control problems are not deterministic - i.e. the agent’s
action choice in a specific state is not the only factor that
determines the next system state. Every additional variable
considered in the representation of the environmental state
increases the number of possible state action combinations,
and transportation optimisation problems are thus challeng-
ing application domains for RL agents. The use of model-
based RL algorithms in a highly stochastic problem domain
like traffic control has been found to add unnecessary extra
complexity when compared with model-free techniques [11].
For these reasons we have based our approach on a model-

free RL method, namely Q-Learning. Here we extend pre-
vious works on RL-TSC by developing a method that incor-
porates Potential-Based Advice in order to speed up learn-
ing and improve agent performance in this complex problem
domain. One of the more complex empirical studies using
Potential-Based Advice is based on a problem domain with
full observability [19]; however, our proposed application of
Potential-Based Advice is based on a problem domain with
partial observability. To the best of our knowledge, this
is the most complex problem domain that Potential-Based
Advice has been evaluated in thus far.
We develop two different agents that are identical in all

respects, except that one of the agents receives Potential-
Based Advice, and the other does not. The state, action and
reward function definitions for our agents are similar to those
used in other published works in RL-TSC (e.g. [4, 9, 10, 11]).
Thus, our approach with advice could be considered to be an
extension of these works. RL-TSC agents using these state,
action and reward definitions have already been proven to
offer considerable performance improvements compared to
real world traffic control systems based on fixed-time con-
trol, semiactuated control, and SCOOT control [11]. In our
experimental work we evaluate our agent with advice against
this existing and proven approach, as other authors have al-
ready dealt with the efficacy of RL versus other techniques
for Traffic Signal Control in a comprehensive manner.
Traffic engineers use the term Phase to refer to a spe-

cific traffic movement through an intersection, and deter-

mining an appropriate phasing sequence (order and dura-
tion in which phases move through the junction) is the main
objective in TSC. The environmental state is defined as a
vector of dimension 2 + P , shown formally in Equation 6
below, where P is the number of phases at the junction. The
first two components in the state definition are the index of
the current phase (Pc) and the elapsed time in the current
phase (PTE), while the remaining P components represent
the queue lengths (QLi) for each phase at the junction.

The state vector is thus constructed as follows for a given
state s:

s =
[
Pc, PTE, QL1, ..., QLn

]
(6)

By making use of a mixed radix conversion we represent
the state vector for each possible state as a single number,
which is used when setting and retrieving values in the Q
values matrix.

The maximum number of queueing vehicles considered is
limited to 20, and the maximum phase elapsed time con-
sidered is limited to 30 seconds. By imposing these limits,
we reduce the number of possible environmental states con-
sidered by an agent. Even with these limits, over 18,500
discrete states are possible for a two phase junction. A vehi-
cle is considered to be queueing at a junction if its approach
speed is less than 10 km/hr. Limiting the number of queue-
ing vehicles about which an agent knows to 20 adds further
realism to our experiments, as in practice it would be pro-
hibitively complex and expensive to detect queueing vehicles
along the entire length of the approach lane.

At each time step t, the actions available to the agents
are: to keep the currently displayed green and red signals,
or to set a green light for a different phase. To eliminate
unreasonably low durations from consideration, phases are
subject to a minimum length. In the case of the 2 Phase test
junction, the minimum phase length is 10 seconds, while the
minimum phase length for the 3 and 4 Phase intersections
is 5 seconds.

Agents are free to extend the current phase or switch to
the next phase as they see fit, and there is no fixed cycle
length. If an agent decides to switch phases, an amber sig-
nal is displayed for 3 seconds, followed by an all red period
of 2 seconds, followed by a green signal to the next phase.
This adds greater realism as it accounts for lost time due to
phase switching, along with reducing the chances of vehicle
collisions occurring.

Each agent selects actions using the ϵ-greedy strategy,
where a random action is chosen with probability ϵ, or the
action with the best expected reward is chosen with the re-
maining probability 1 − ϵ. The value of ϵ is set to 0.05 for
all agents in these experiments. This value of ϵ promotes
exploitation of the knowledge the agent has gained, while
still allowing for sufficient exploration.

The reward function used by all agents is shown in Equa-
tion 7 below. When an agent selects an action a in a given
state s and transitions to a resultant state s′, the reward
received is defined as the difference between the current
and previous cumulative waiting times (CWT) of vehicles
queueing at the junction. Therefore, actions that decrease
the cumulative waiting time receive a positive reward, while
actions that increase the cumulative waiting time incur a
negative reward (or penalty).



R(s, a, s′) = CWTs − CWTs′ (7)

We have decided to use Look-Ahead Advice to incorpo-
rate domain knowledge into our approach for two reasons.
Firstly, a proof has been published that guarantees policy
invariance when using LAA in a single agent learning sce-
nario, while no corresponding proof has been published for
Look-Back Advice. As the three problems we consider here
are all single agent learning scenarios, the theoretical guar-
antees of this proof hold true. Secondly, the approaches that
we wish to extend are based on Q-Learning, and Look-Back
Advice requires the use of an on-policy algorithm such as
SARSA. By using a different Q update rule, our approach
would no longer be comparable to those published previ-
ously that use these state action and reward definitions, as
all of these approaches are based on Q-Learning (e.g. [4, 9,
10, 11]). It is important that we use the same Q update
rule in the basic and advised agents, in order to conduct a
fair evaluation of the efficacy of Potential-Based Advice for
Traffic Signal Control applications.
The potential function is defined as follows:

Φ(s, a) =
QLa

ΣQL
(8)

Here QLa is the queue length corresponding to the phase
a, while ΣQL is the sum of the queue lengths for all of the
phases at the junction. This approach could be considered
to be similar to a longest queue first rule, as the potential
of a state action pair is higher when the proportion of total
queueing vehicles for that phase is higher. Therefore, the
agent will be encouraged to give more green time to phases
that have a higher number of vehicles waiting than the other
phases.

4. EXPERIMENTAL DESIGN
We have based our experimental setup around the mi-

croscopic traffic simulation package SUMO (Simulation of
Urban MObility) [12], and agent logic is defined in our ex-
ternal framework, which is implemented in Java. The simu-
lation timestep length is set to 1 second for all experiments.
We use the TraaS library [2] to make simulation parameters
available to the agents, and also to send signal switching
instructions from the agents back to SUMO.
All agents begin each experiment with their Q values for

each state action pair initialised to zero. The values used for
the learning rate α and the discount factor γ are 0.08 and
0.8 respectively. All learning agents in our experiments use
these values of α and γ.
The RL agents with and without advice are evaluated ex-

perimentally using three different scenarios, which are based
on the intersections shown in Figs. 1 to 3. The number of
phases, lane configuration, and traffic demand levels differ
for each test intersection. As work by other researchers has
already proven the efficacy of RL-TSC approaches in test
scenarios with multiple intersections (see e.g.[3, 7, 11, 16]),
we have decided to focus on using single junction test cases
to clearly illustrate the benefit of our RL approach using
advice without adding unnecessary additional complexity.
The traffic demand D (measured in vehicles per hour)

at each junction is generated using a step function. This
demand step function is comprised of a episode length e,

Figure 1: 2 Phase Junction

base flow b (baseline flow of vehicles through the junction),
step demand increase h (the additional demand introduced
at each step in the function), and a step interval i (duration
in seconds between demand steps). Thus the demand at any
time t into a particular episode can be calculated according
to Equation 9 below:

D(t) =


b+

h× t

i
t <

e

2

b+ h×
( e

2× i
− 1−

t− 0.5× e

i

)
otherwise

(9)
The increase in demand due to this function is computed

at intervals equal to i. This time-varying traffic demand
presents a more challenging flow pattern for the agents to
control, compared to a constant hourly demand definition.
These step functions aim to emulate peaks in demand similar
to those during a morning or evening rush hour. Agents are
trained on a junction for a number of successive episodes,
and the same demand step function is repeated during each
episode. An agent then builds up experience gradually over
the training duration. For all intersections we use an episode
length of 2 hours. Agents are trained for a period of 75
episodes on each intersection. There are a fixed number
of possible routes through each intersection, and vehicles
are randomly assigned to one of the possible routes upon
insertion into the network.

The first test case is a simplified junction with 2 phases:
North and East (see Fig. 1). Here two intersecting one-
way streets are controlled by a set of traffic lights, with the
number of phases P = 2. The base flow for the step function
is 1000 vehicles per hour (veh/hr). The demand level rises by
250 veh/hr every 15 minutes, reaching a peak of 1750 veh/hr,
before stepping down again to a value of 1000 veh/hr. There
are four possible routes through the intersection.

The second intersection is a T junction, with three inter-
secting two-way streets (shown in Fig. 2). There are 6 pos-
sible routes through the junction, and three phases: North,
East and South. The base flow is set to 1000 veh/hr, rising
by 100 veh/hr every 15 minutes to a peak of 1300 veh/hr,
before returning to 1000 veh/hr.

The final junction joins four streets with two-way traffic
(see Fig. 3). This is divided into four phases: North, East,
South and West. Here there are 12 possible routes through



Figure 2: 3 Phase Junction

Figure 3: 4 Phase Junction

the intersection. The base flow is set to 1000 veh/hr, which
rises by 100 veh/hr every 15 minutes, giving a peak demand
of 1300 veh/hr before reducing to the original value of 1000
veh/hr.
The following parameters are measured for each experi-

ment: Average Waiting Times and Average Queue Lengths.
We measure these values from SUMO using a customised
data collection framework. The values reported for these
parameters are the averages for each episode.

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

The experimental results are presented in Figures 4 to
7. These graphs plot the Average Waiting Times (AWT)
and Average Queue Lengths (AQL) for approaches tested
on each of the three intersections. The results for AWT
and AQL are summarised in Tables 1 and 2. We conducted
10 statistical runs of all experiments to ensure consistency
and repeatability, and the plots in Figures 4 to 7 show the
average values measured.
In general, it is clear to see that our RL approach with

advice outperforms a learner without advice on each of the
intersections tested, with an increased rate of learning and
better performance at the end of the training period.
Figs. 4 to 6 show the average vehicle waiting times (AWT)

for the 2 Phase, 3 Phase, and 4 Phase junctions respectively.

Figure 4: Waiting Times, 2 Phase Junction

Figure 5: Waiting Times, 3 Phase Junction

Each of these plots shows an improvement in AWT when
advice is given to the learner. A clear increase in learning
speed can be seen in these plots, with the agent receiving
advice outperforming the agent without advice on all test
intersections.

The Average Queue Lengths (AQL) for each experiment
are plotted in Fig. 7. Similar to our findings in terms of
AWT, our RL approach with advice improves performance,
resulting in lower AQL values by the end of the training
period in the case of the 2 and 3 Phase intersections. For
the more complex 4 Phase test case, the AQL values see no
noticable improvement.

To ensure the significance of our experimental results, a
number of t-tests were conducted. The differences in the
means were deemed to be significant if the two-tailed p-value
was less than 0.05. For each experiment, we tested the mean
values of waiting times and queue lengths over the final 10
episodes. Our approach using Look-Ahead Advice was found
to have statistically better performance in terms of waiting
times for all junctions tested at the end of the 75 episode
training period. The reductions in AQL for both the 2 and
3 Phase intersections were also deemed to be statistically
significant. In the case of the 4 Phase junction, there was
no significant difference between the mean queue lengths at



Figure 6: Waiting Times, 4 Phase Junction

Figure 7: Queue Lengths, All Junctions

the end of the training period for both approaches tested.
For all test intersections our RL approach with Look-

Ahead Advice was found to increase learning speed and to
have reached a better policy by the end of the 75 episode
training period when compared to a learner without advice.
Reductions of up to 10% in waiting times were observed for
the 2 Phase test case at the end of the training period, with
encouraging results for the 3 and 4 Phase intersections also.
Further refinement of our potential function is required to
achieve the same level of performance in the more complex
3 and 4 Phase scenarios as seen in the 2 Phase case.

6. CONCLUSIONS AND FUTURE WORK
Here we have presented an application of Potential-Based

Advice to three different traffic signal control problems. Our
approach extends previously published works on Reinforce-
ment Learning for Traffic Signal Control using Look-Ahead
Advice with a domain specific heuristic as a potential func-
tion. We have proven experimentally that the proposed ap-
proach with Look-Ahead Advice outperforms a previously
published Q-Learning approach, with improvements in learn-
ing speed, waiting times and queue lengths. This was achieved
by testing our algorithm with advice on progressively more
complex signalised junctions with time-varying traffic flow

Table 1: Summary of Experimental Results (Aver-
age Waiting Times over Final 10 Episodes)

Experiment AWT % Reduction σ
2 Phase, Q-Learner 41.28 - 0.82
2 Phase, Q-Learner LAA 36.96 10.46 % 0.42

3 Phase, Q-Learner 102.11 - 0.42
3 Phase, Q-Learner LAA 100.46 1.62 % 0.66

4 Phase, Q-Learner 171.99 - 1.75
4 Phase, Q-Learner LAA 162.92 5.27 % 2.03

Table 2: Summary of Experimental Results (Aver-
age Queue Lengths over Final 10 Episodes)

Experiment AQL % Reduction σ
2 Phase, Q-Learner 12.75 - 0.21
2 Phase, Q-Learner LAA 11.67 8.52 % 0.14

3 Phase, Q-Learner 17.13 - 0.09
3 Phase, Q-Learner LAA 16.53 3.49 % 0.08

4 Phase, Q-Learner 19.73 - 0.05
4 Phase, Q-Learner LAA 19.70 0.15 % 0.04

distributions. In contrast to previous empirical evaluations
of Potential-Based Reward Shaping and Potential-Based Ad-
vice, our results are derived from an application to a complex
real world problem domain.

While we have tested using only single isolated junctions,
the benefits in terms of learning speed and performance are
already clear compared to an RL approach without advice.
In future we plan to test this method more extensively on
traffic networks with multiple signalised junctions. Our ex-
perimental work in this paper only considered single agent
learning scenarios, and a proof of policy invariance for Look-
Ahead Advice exists for the single agent case. In future ex-
perimental work with multiple signalised junctions, we will
have to consider the implications of the lack of a proof of
policy invariance for LAA in these Multi Agent learning sce-
narios. The eventual goal is to test this method using a
simulated real world traffic network to prove its merit when
compared to commonly deployed traffic control strategies.
We also wish to explore other alternatives to the potential
function presented here that may offer further performance
benefits.
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