
Adversarial Synergy Graph Model for Predicting
Game Outcomes in Human Basketball

Somchaya Liemhetcharat
Institute for Infocomm Research

Agency for Science, Technology and Research
Singapore 138632, Singapore

liemhet-s@i2r.a-star.edu.sg

Yicheng Luo
National Junior College

Singapore 288913, Singapore
ethanluoyc@gmail.com

ABSTRACT
There are 30 teams in the National Basketball Association
(NBA), and each team has a roster of 15 players. During
a basketball match, a line-up of 5 players from one team
plays against another line-up of 5 players from the opposing
team. Typical approaches to predicting the game outcome
use single-agent statistics, e.g., the percentage of successful
3-pointers of a player. In this paper, we adapt the Synergy
Graph model – a multi-agent model that has been already
applied to algorithms and robots – to human data from the
NBA. The Synergy Graph model consists of a connected
graph where vertices are the agents and edges represent the
compatibility among agents, and single-agent capabilities
are associated with each vertex. We learn an Adversarial
Synergy Graph comprising NBA players using play-by-play
data of past NBA games, with the goal of predicting which
team will win when two line-ups play against each other.
We show that the Adversarial Synergy Graph’s prediction
outperforms a regression model’s prediction, thus illustrat-
ing the benefit of the Adversarial Synergy Graph model on
human data.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Team formation, performance modeling, learning, synergy,
basketball, human teams

1. INTRODUCTION
A game of basketball involves a line-up of 5 players from

one team versus another line-up of 5 players from another
team. Each of these teams typically train and practice for
months before the National Basketball Association (NBA)
games, so the players have prior coordination within the
team. However, it is difficult to anticipate and train against
all other teams and line-ups in the NBA, even with some
friendly games in the off-season. Thus, when considering
two line-ups from opposing teams, it is generally true that
they have not had prior coordination.

We are interested in modeling the interactions of these
basketball players, in other to predict the outcome of the

line-ups, i.e., which team will score more than the other. In
general, we are interested to model adversarial multi-agent
teams, in order to predict the overall performance.

Existing Synergy Graph models focus on fully collabora-
tive multi-agent teams that coordinate on a shared task.
In this paper, we contribute the Adversarial Synergy Graph
model, where two opposing multi-agent teams are competing
in a zero-sum game. Each agent is represented as a vertex
in the Adversarial Synergy Graph, and the edges represent
the compatibility among agents, within the same team, and
across teams.

We use human basketball as our motivating domain, and
demonstrate how the Adversarial Synergy Graph model is
applied to basketball.We use three seasons of NBA play-by-
play data (2007-08, 2008-09, and 2009-10) to train and test
the Adversarial Synergy Graph model, and show that we
outperform a linear regression approach. The only inputs
required to train the Adversarial Synergy Graph are the
player names of the two line-ups, and their point-difference;
in contrast, detailed statistics on the line-ups are necessary
for the training of linear regression. Thus, our approach is
general and can be applied to many other domains without
the need for domain-specific information.

Other approaches to predicting basketball performance,
which we discuss later in the related work section, use de-
tailed statistics, such as the percentage of successful field
goals and the number of rebounds. Complex models are
learned using these statistics, and frequently involve do-
main experts to extract relevant features. Further, these
approaches focus on either single-player statistics, or teams
as a whole, and do not model how the performance of a team
varies based on its line-up. Our approach is different in that
we model the performance of a particular line-up, in the
presence of another line-up of the opposing team. By doing
so, we predict different game outcomes depending on which
line-up is chosen by the opposing team, even if the two line-
ups have not intereacted with each other before (i.e., played
a basketball game together).

Our approach is applicable to general multi-agent adver-
sarial games, and we believe it is also of significant interest to
basketball teams. Basketball team managers have to often
choose to recruit players from other teams, and our model
allows the managers to have an estimate of how the newly
recruited player would perform in future games. Further,
by incorporating the opponent’s line-up in our model, bas-
ketball team managers would be able to select the optimal
line-up that maximizes the probability of winning during a
game.



The layout of our paper is as follows: Section 2 discusses
related work in predicting basketball results, and previous
Synergy Graph models. We give a background of the histor-
ical basketball data in Section 3. We present the Adversarial
Synergy Graph model and learning algorithm in Section 4.
We describe our experiments in Section 5 and conclude and
discuss future work in Section 6.

2. RELATED WORK
Sports result predictions have been commonly studied in

scientific research. Various approaches have been used to
predict the outcomes of sports games. In some approaches,
the predictions are made based on the experience and opin-
ions of experts in basketball. In other approaches, data-
mining techniques have been adopted to interpret the game
results and for other assessments. Common data-mining
techniques include artificial neural networks, decision trees,
Bayesian methods, logistic regression, support vector ma-
chines, and fuzzy methods [3].

Buursma treats the prediction of football matches as a
classification problem of “home win”, “draw”, “away win”
and uses a few algorithms including decision forest, Bayesian
networks, linear and logistic regression [1] using the Waikato
Environment for Knowledge Analysis (WEKA) [4]. Kahn
uses Artificial Neural Networks (ANN) to predict NFL foot-
ball games [5].

As for basketball in particular, the outcome of the predic-
tion can either be a direct classification of win/loss or as the
regression of the point difference between the teams. To pre-
dict the point difference, one approach is to use multivariate
linear regression. Miljkovic et. al predicted the outcome of
the 2009-2010 season by using Bayesian inference to classify
the win/loss of the games [11]. Furthermore, they used mul-
tivariate linear regression to predict the point difference (also
known as spread) of the games. Cao used Simple Logistics
Classifier, Artificial Neural Networks, SVM and Naive Bayes
and found that the Simple Logistics Classifier produces the
best results [2]. Trawinski proposed a fuzzy classification
model to predict the ACB Basketball League results [12].

However, these approaches treat the team of players as a
single agent. They do not consider the line-ups used during
the game, e.g., a well-trained team of average players may
outperform a team of star players that do not coordinate
well.

The Synergy Graph model was introduced to capture the
synergistic effects of agents in a collaborative multi-agent
team [6, 10]. The Synergy Graph represents agents as ver-
tices in a connected graph, and the edges represent the
agents’ task-based relationships, i.e., agents that are com-
patible and work better at a task have shorter pairwise dis-
tances. The Synergy Graph has been applied to software
agents [10] and robots [7], as well as to configure a multi-
robot team by selecting the robots’ components [9, 8]. How-
ever, the Synergy Graph model has previously only been
used to model the performance of a multi-agent team in a
collaborative task. In this paper, we consider using the Syn-
ergy Graph model in an adversarial task (i.e., a zero-sum
game) where two multi-agent teams are in competition.

3. BACKGROUND ON BASKETBALL DATA
The play-by-play data of the season from 2008 to 2009

of the National Basketball Association (NBA) is available

online: we used http://www.basketballgeek.com as well as
http://www.basketball-reference.com. The play-by-play
data of game in the season is available as Comma Separated
Values (CSV) files.

The play-by-play data describe the series of events that
happen in a particular NBA game. These events include
assists, blocks, steals, shots, free throws, rebounds and many
other events that have statistical significance in evaluating
the team’s performance. Table 1 shows a sample of the play-
by-play data. The first 5 columns (h1-h5 ) show the players
of the line-up of the home team, and the next 5 columns (o1-
o5 ) show the players of the line-up of the opposing team.
The time column is the time remaining in a period (i.e., a
quarter of the game). The team column is the team which
the event on the etype column takes place.

To calculate the point difference between two particular
line-ups, each CSV is parsed based on the substitution of a
player, i.e., every segment of play-by-play data starts with
the substitution (as represented by etype sub) of a player and
ends with another substitution of a player. Table 1 shows
one segment of the play-by-play data. We aggregate all the
points scored by the team and the opponent team to calcu-
late the point difference between the two teams. In the ex-
ample shown in Table 1, the points scored by Cleveland Cav-
aliers (CLE) is 4 as there is 1 successful 2 point shot (shot 2 )
in row 2 and two successful free throws (f throw 1 ) in row
8 and row 9, giving a total score of 2 + 2 = 4 points. On
the other hand, the points scored by Boston Celtics (BOS)
is also 4 as there are two successful 2 point shots (shot 2 )
in row 3 and row 15 respectively. Hence the point difference
between CLE and BOS is 4− 4 = 0 points. We repeat this
process for all segments of the play-by-play data.

Besides the play-by-play data, we also retrieve the sea-
sonal statistics, e.g., Field Goal Percentage (FGP), Free
Throw Percentage (FTP) of the season, of the line-ups in-
volved in the data from http://stats.nba.com. Each line-
up has its own statistics, e.g., (House, Perkins, Garnett,
Pierce, Allen) from Table 1 have a different FGP from (Wal-
lace, West, James, Williams, Ilgauskas).

Many existing approaches consider the statistics of the
entire team, e.g., the FGP of Cleveland Cavaliars (CLE),
and use these team statistics to predict the game outcomes.
Figure 1 shows the spread of some of the statistics of line-
ups within a single team in the NBA; we illustrate the CLE
team, but it is similar for other NBA teams. In the box-
and-whisker plots, the boxes indicate the 25th and 75th per-
centiles, the red lines indicate the median, and the whiskers
(i.e., the horizontal lines) indicate the maximum and min-
imum values. The chart of the left shows the Field Goal
%, Free Throw %, and 3 Pointers %, and the chart on the
right shows the number of rebounds, turnovers, fouls and
assists. Since each line-up plays for a different amount of
time through a game (and through a season), the values of
rebounds, turnovers, fouls and assists have been proportion-
ally scaled.

Hence, Figure 1 shows that there is a large variation of the
various statistics among the line-ups within a team. As such,
we believe that the line-ups play a big role in determining
the outcome of a game. In particular, we believe that not
only does the line-up of a team matter, the line-up of the
opponent is important as well.

Our Adversarial Synergy Graph learning algorithm does
not use the statistics of the two line-ups for training. These



h1 h2 h3 h4 h5 o1 o2 o3 o4 o5 time team etype
1 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 06:38 BOS sub
2 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 06:25 CLE shot 2
3 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 06:11 BOS shot 2
4 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:49 CLE shot miss
5 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:48 CLE rebound
6 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:45 BOS foul
7 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:45 BOS timeout
8 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:45 CLE f throw 1
9 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:45 CLE f throw 1
10 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:32 CLE foul
11 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:24 BOS shot miss
12 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:23 BOS rebound
13 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:18 BOS shot miss
14 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 05:17 BOS rebound
15 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 04:57 BOS shot 2
16 House Perkins Garnett Pierce Allen Wallace West James Williams Ilgauskas 04:57 CLE foul
17 House Perkins Garnett Pierce Allen West James Williams Szczerbiak Ilgauskas 04:57 CLE sub

Table 1: One segment of the play-by-play data.

Field Goal% Free Throw% 3 Pointer%
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Rebounds Turnovers Fouls Assist
0

20

40

60

80

100

120

140

160

180

Pe
rc

en
ta

ge

Figure 1: Box-and-whisker plots of various statistics of different line-ups within the Clevaland Cavaliars (CLE) team of the
NBA.

statistics are used for the linear regression algorithm that
we compare against. The data used for linear regression
includes the two sets of the statistics of the two line-ups
and the point difference produced by the two line-ups in the
segment of data. We neglect the segments of play-by-play
data that have line-ups whose statistics are not available at
http://stats.nba.com due to little time played during the
season.

4. OUR SYNERGY GRAPH APPROACH
The Synergy Graph model was introduced to model the

performance of a multi-agent team performing collaborative
tasks [6, 10]. In this paper, we adapt the Synergy Graph
model to model the outcome of two adversarial multi-agent
teams in a zero-sum game.

We first introduce the Adversarial Team Performance prob-
lem. We then formally define the Adversarial Synergy Graph
model, and explain the key differences from the previously
introduced Synergy Graph models. Next, we illustrate how

the Adversarial Synergy Graph model is applied to human
basketball, and describe how we learn an Adversarial Syn-
ergy Graph completely from data.

4.1 Adversarial Team Performance Problem
We begin with the definition of the set of agents and the

definition of a team:

Definition 4.1. The set of all agents is A = {a1,1,
. . . , a1,M1 , a2,1 . . . , aN,MN }, where each ai,α ∈ A is an agent.

The set of agents A contains all possible agents, and each
agent ai,α belongs to a group i. Teams are subset of agents
that belong to the same group.

Definition 4.2. A team is any subset Ai ⊆ A such that
∀aj,α ∈ Ai, i = j.

We are interested in the performance of two adversarial
teams, i.e., the overall performance of a task given two com-



a1,1

a1,2

a2,1

a2,2

a3,1

a3,2

C1,1 = 3.2 C2,1 = −2.7 C3,1 = 0.1

C1,2 = −0.2 C2,2 = 3.5 C3,2 = 0.8

Figure 2: An example Adversarial Synergy Graph with 6
agents – 2 agents each in 3 groups.

petition teams. The performance may be positive or neg-
ative, indicating that the former or latter team performed
better, similar to the notation of zero-sum games.

Definition 4.3. The performance of two adversarial teams
Ai and Aj (i 6= j) is P(Ai, Aj) ∈ R.

LetD be the data set that contains some P(Ai, Aj), i.e., ex-
amples of performance of Ai and Aj .

The goal of the adversarial team performance problem is
to model PAi,Aj for all Ai, Aj using D, in order to maximize:

∑
P(Ai,Aj)∈D

{
1 if sign(P̂(Ai, Aj)) = sign(P(Ai, Aj))

0 otherwise

where P̂(Ai, Aj) is the model prediction of P(Ai, Aj) and

sign(x) =


1 if x ≥ ε
−1 if x ≤ −ε
0 otherwise

Note that our use of sign(x) is slightly different from the
integer sign(i), where sign(i) = 0 if and only if i = 0. In our
case, since x ∈ R (performance is a real number), we use the
threshold (−ε, ε) to denote an equal performance between
both adversarial teams, where ε ∈ R+.

4.2 Adversarial Synergy Graph Model
We formally define the Adversarial Synergy Graph model:

Definition 4.4. An Adversarial Synergy Graph is a
tuple (G,C), where:

• G = (V,E) is a connected unweighted graph,

• V = A, i.e., each agent is represented by a vertex,

• E are unweighted edges in G, and

• C = {C1,1, . . . , C1,M1 , C2,1 . . . , CN,MN }, where Ci,α ∈ R
is agent ai,α’s capability.

The edges in the Adversarial Synergy Graph represent the
task-based relationships among the agents, and we use the
pairwise distances in order to compute the synergy of teams.
A comprehensive description of task-based relationships and
how they are modeled is presented in [10].

Figure 2 shows an example Adversarial Synergy Graph
with 6 agents. The agents belong to three groups, where

each group has two agents. Each agent has a unique capa-
bility, and the unweighted edges in the graph connect the
agents. The shortest distance between agents is measured
by the number of edges between them, e.g., the distance
d(a1,1, a1,2) = 1 and d(a1,1, a3,2) = 3.

Using the Adversarial Synergy Graph structure and agent
capabilities, we define the pairwise synergy among agents in
the same team.

Definition 4.5. The pairwise synergy of two agents
ai,α and ai,β in the same team i is:

S2,team(ai,α, ai,β) = φ(d(ai,α, ai,β)) · (Ci,α + Ci,β)

where d(ai,α, ai,β) is the shortest distance between the ver-
tices representing the agents in the unweighted graph G (i.e.,
edges have a distance of 1), and φ : R → R is the compati-
bility function.

The compatibility function φ maps larger distances to
lower compatibility. Examples include φfraction(d) = 1

d
and

φdecay(d) = exp
(
− d ln 2

h

)
. [10] provides details on the com-

patibility function, its motivation, as well as examples. In
this paper, we use φfraction(d) = 1

d
as our compatibility func-

tion.
From Def. 4.5, the synergy of teammate agents increases

when their individual capabilities (Ci,α, Ci,β) increase, or
when their pairwise distance (d(ai,α, ai,β)) decreases.

We now define the pairwise synergy among agents in dif-
ferent teams.

Definition 4.6. The pairwise synergy of two agents
ai,α and aj,β in adversarial teams i 6= j is:

S2,adver(ai,α, aj,β) = φ(d(ai,α, aj,β)) · (Ci,α − Cj,β)

where d(ai,α, aj,β) is the shortest distance between the ver-
tices representing the agents in the unweighted graph G (i.e.,
edges have a distance of 1), and φ : R → R is the compati-
bility function.

The main difference between Definitions 4.5 and 4.6 is
in the usage of the agent capabilities. In Definition 4.5,
the agent capabilities are summed because the agents are in
the same team, so S2,team(ai,α, ai,β) = S2,team(ai,β , ai,α). In
contrast, the difference in the agent capabilities is used in
Definition 4.6, so S2,adver(ai,α, aj,β) = −S2,adver(aj,β , ai,α).
Since the agents are in opposing teams, the difference in
their capabilities plays a role in determining the overall team
performance (i.e., which team will win).

From the pairwise synergy definitions, we now define the
overall synergy function that computes the expected perfor-
mance of two adversarial teams.

Definition 4.7. The synergy of two adversarial teams
Ai and Aj (i 6= j) is:

S(Ai, Aj) =
1(|Ai|+|Aj |
2

)
 ∑
{ai,α,ai,β}∈Ai

S2,team(ai,α, ai,β)

−
∑

{aj,α,aj,β}∈Aj
S2,team(aj,α, aj,β)

+
∑

ai,α∈Ai,aj,β∈Aj

S2,adver(ai,α, aj,β)





The synergy of the teams Ai, Aj is computed first by the
difference of pairwise synergy of agents within the team Ai
and agents within the team Aj , and then by the pairwise
synergy of agents across both teams. Hence, both the capa-
bilities and pairwise distances among the agents play a large
role in affecting the final synergy result.

Also, note that S(Ai, Aj) = −S(Ai, Aj), so S(Ai, Aj) > ε
indicates that Ai “won” Aj in the zero-sum game between
Ai and Aj .

4.3 Differences from the Synergy Graph Model
There are a number of differences between the Adversarial

Synergy Graph model we contribute in this paper, and the
other Synergy Graph models introduced in the past. We
highlight the main differences below:

1. The Adversarial Synergy Graph models interactions of
agents in two adversarial teams;

2. The graph in the Adversarial Synergy Graph uses un-
weighted edges;

3. The agent capabilities are real numbers.

As described in Section 2, the previous Synergy Graph
models focused on agents that collaborated in the same team
for a common goal. In this paper, we consider adversarial
teams, where two teams are in direct competition in a zero-
sum game. It is interesting to consider “synergy” among
agents in adversarial teams, since the term synergy is typ-
ically used in collaborative teams. We believe synergy is
still an apt word for the adversarial case, because there is
synergy within agents of each team, and also interactions
between agents of opposing teams.

Secondly, our Adversarial Synergy Graph model uses un-
weighted edges. The initial Synergy Graph model used un-
weighted edges [6], but weighted edges were subsequently
used to increase the space of representable domains (some
examples of cases where unweighted edges cannot represent
the task-based relationships are shown in [10]. However,
we use unweighted edges in the Adversarial Synergy Graph
model presented here for two main reasons: (1) it is the first
model of adversarial interactions using Synergy Graphs, and
(2) there are typically a large number of vertices when con-
sidering opponents, so the search space when learning the
Adversarial Synergy Graph would be exponentially larger
with weighted edges. We elaborate on (2) in the next sub-
section when we explain how we apply it to human basket-
ball.

Thirdly, the Adversarial Synergy Graph model uses real
numbers. The previous Synergy Graph models use Normally-
distributed variables to capture the variability in agent and
team performance. We believe that using Normal variables
provides a more comprehensive model of team performance,
but similar to reason (2) listed above, the large number of
vertices in the Adversarial Synergy Graph increases the com-
plexity of learning. We plan to consider weighted edges and
Normally-distributed capabilities as future work.

4.4 Modeling Human Basketball Performance
To apply the Adversarial Synergy Graph model to human

basketball, we consider the National Basketball Association
(NBA) games. We chose the NBA for the following reasons:

• Statistics of players are readily available;

• Play-by-play data of NBA games are available;

• A basketball game involves 5 players versus 5 players,
while each team has a roster of 15 players;

• The rules of basketball allows many player substitu-
tions throughout one game.

We described the format of data available on NBA players
and games in the previous section, and focus on how we
apply the Adversarial Synergy Graph model to predict NBA
results in this subsection.

Each agent ai,α represents a player in the NBA (e.g., Le-
Bron James). Each player is also associated with an NBA
team (e.g., Cleveland Cavaliers). Hence, we create the Ad-
versarial Synergy Graph using the players of the NBA and
their associated teams.

The edges in the Adversarial Synergy Graph model repre-
sent the agents’ task-based relationships, i.e., how well they
play basketball with their teammates, and against their op-
ponents. We will learn the Adversarial Synergy Graph struc-
ture from training data (explained in the next subsection).

The agent capabilities Ci,α represent the contribution of
the player to the overall team performance. Various statis-
tics of basketball players are available, such as their field
goal percentage (FGP), i.e., the probability that a field goal
thrown by the player enters the hoop. However, these statis-
tics are typically offense-oriented and do not capture the
contributions of defensive players well. Hence, we will learn
the agent capabilities from data as well.

The training data provided to learn the Adversarial Syn-
ergy Graph model is the following:

((h1, h2, h3, h4, h5), (o1, o2, o3, o4, o5), ptd)

where h1, . . . , h5 are the names of the players on the line-up
of home team, and o1, . . . , o5 are the players on the line-up
of the opposing team. Each line-up in basketball consists of
exactly 5 players. ptd is the point-difference between these
two line-ups.

In a typical basketball game, there are many line-ups cho-
sen by each team, so a single game yields many unique
((h1, . . . , h5), (o1, . . . , l5), ptd) tuples. We chose to use the
point-difference as the team performance because it is zero-
sum (i.e., a positive value indicates that the home team
scored more points than the opposing team, and vice versa).
Furthermore, point-difference is time-independent, in that
a line-up pair that played for 10 minutes can be compared
equivalently to a line-up pair that played for 3 minutes, since
both teams had equal opportunities to score and defend. In
contrast, measuring points scored or goals attempted would
be non zero-sum and time-dependent.

It is very interesting that we only use the line-up names
and point difference as input to our Adversarial Synergy
Graph learning algorithm – we do not need other informa-
tion such as individual player statistics, or other basketball-
specific information. We believe that this is one of the main
unique attributes of the Synergy Graph approach – very
little domain-specific knowledge is required, only the two
line-ups and the final outcome.

4.5 Learning the Adversarial Synergy Graph
from Data

To learn the Adversarial Synergy Graph, we use a similar
technique that has been previously employed on previous
Synergy Graph models (e.g., [10]):



1. We initialize a random connected graph structure with
the number of vertices matching the number of agents;

2. From the graph structure, we learn the agent capabil-
ities with data;

3. We iteratively improve the graph structure and learn
agent capabilities.

Algorithm 1 shows our learning algorithm:

Algorithm 1 Learn an Adversarial Synergy Graph for the
agent set A, using the training set Dtrain

LearnAdSynGraph(A, Dtrain)

1: // Dtrain = {((h1, . . . , h5), (o1, . . . , o5), ptd), . . .}
2: // Create a random connected unweighted graph
3: G← RandomGraph(|A|)
4: // Learn the agent capabilities using G and Dtrain

5: C ← LearnCapabilities(G,Dtrain)
6: // Form the initial Adversarial Synergy Graph
7: S ← (G,C)
8: // Compute the initial training error
9: e← ComputeError(S,Dtrain)

10: // Simulated annealing
11: k ← 0
12: while k < K do
13: G′ ← RandomNeighborStructure(G)
14: C′ ← LearnCapabilities(G′, Dtrain)
15: S′ ← (G′, C′)
16: e′ ← ComputeError(S′, Dtrain)
17: if Accept(e, e′) then
18: S ← S′

19: e← e′

20: k ← 0
21: else
22: k ← k + 1
23: end if
24: end while
25: return S

4.5.1 Creating the initial Adversarial Synergy Graph
The first step of the algorithm involves creating an ini-

tial “guess” of the Adversarial Synergy Graph. To do so,
Algorithm 1 first generates a random graph structure (line
2), based on the set of agents A. Specifically, it creates |A|
vertices, and randomly generates edges between all pairs of
vertices. Each possible edge has a probability p of being
generated, and the graph structure generated is tested to
ensure that the graph is connected, i.e., there exists a path
from any vertex to any other vertex.

After the initial graph G is created, the agent capabilities
C is learned (line 5 of Algorithm 1). We will describe the
LearnCapabilities function in the next subsection.

The training error of the initial Adversarial Synergy Graph
is then computed (line 9), which uses the root-mean squared
error of the predicted point difference:

ComputeError(S,D) =

√∑
(Ai,Aj ,ptd)∈D(S(Ai, Aj)− ptd)2

|D|

4.5.2 Learning the agents’ capabilities
From the unweighted graph structure G and the training

data Dtrain, we learn the agent capabilities C. To do so, we

solve a series of linear equations using Definitions 4.5, 4.6,
and 4.7.

Notice that the Synergy equations are all linear, and we
can expand them as follows (k = 1

(|Ai|+|Aj |
2 )

):

S(Ai, Aj) = k ·
∑

{ai,α,ai,β}∈Ai
φ(d(ai,α, ai,β))(Ci,α + Ci,β)

− k ·
∑

{aj,α,aj,β}∈Aj
φ(d(aj,α, aj,β))(Cj,α + Cj,β)

+ k ·
∑

ai,α∈Ai,aj,β∈Aj

φ(d(ai,α, aj,β))(Ci,α − Cj,β)

S(Ai, Aj) =
∑

ai,α∈Ai

ki,α · Ci,α +
∑

aj,β∈Aj

kj,β · Cj,β

In particular, from the training data Dtrain, we know what
value S(Ai, Aj) should be, and so each tuple in Dtrain forms
a linear equation where the only unknowns are the agent
capabilities Ci,α and Cj,β , since all ki,α and kj,β can be
computed from the graph structure (it only depends on k
and the distances between vertices in the graph). Hence, we
can find the least-squares solution to these series of linear
equations, and learn the agents’ capabilities.

4.5.3 Iteratively improving the Adversarial Synergy
Graph

To learn the final Adversarial Synergy Graph, we itera-
tively improve the initial guess using simulated annealing.
We randomly create neighbor graph structures, i.e., con-
nected unweighted graphs that differ from the original by
either adding or removing an edge.

Using the neighbor graph structure, we learn the agents’
capabilities (described in the previous subsection), and com-
bine them to form a neighbor Adversarial Synergy Graph
(note that the Adversarial Synergy Graph consists of only
the graph structure and the agents’ capabilities). We then
compute the error in the predicted point difference of the
neighbor Adversarial Synergy Graph. The error of the cur-
rent and neighbor Adversarial Synergy Graphs are com-
pared, and the neighbor is accepted subject to the temper-
ature schedule of the simulated annealing.

The key difference between the simulated annealing al-
gorithm in this paper versus previous Synergy Graph work
(e.g., [10]) is that we do not use a fixed number of itera-
tions of simulated annealing. We terminate the simulated
annealing only when no neighbors have been accepted for K
iterations. We chose to modify the simulated annealing algo-
rithm in this way because the space of Adversarial Synergy
Graph structures is very large (O(2|A|)), and |A| was also
much larger than in previous Synergy Graph work (which
we elaborate in the next section).

5. EXPERIMENTS AND RESULTS
In this section, we describe the experiments we conducted

to evaluate the Adversarial Synergy Graph model in pre-
dicting the outcomes of human basketball games. We first
discuss how we parsed the historical play-by-play data to
provide input to the Synergy Graph learning algorithm. We
next describe the linear regression algorithm that we used
as a benchmark. Then, we present our experimental results
and analysis.



5.1 Parsing Historical Data
We used the NBA play-by-play data of the 2007-2008,

2008-2009, and 2009-2010 seasons, which comprises 1183,
1176, 1215 games respectively. Within each game, the two
teams frequently changed their line-ups, and we extracted
the ((h1, h2, h3, h4, h5), (o1, o2, o3, o4, o5), ptd) tuples, where
hi and oj are the names of the players in the home and
opposing teams respectively. In the 2008-2009 season for
example, there were 444 unique players (some players did
not play any games at all and were excluded), and 60235
tuples.

Since creating an Adversarial Synergy Graph of all the
NBA players would require a graph of 450 vertices per sea-
son, we decided to use a subset of the data for our experi-
ments, of ∼150 players and ∼1000 line-up tuples (the exact
numbers varied a little depending on the season). We chose
such a number so that the Adversarial Synergy Graph would
still be large (150 vertices) but not prohibitively so. The
previous Synergy Graph work typically had around 15-25
vertices, so this was six-fold increase in the vertex size. The
1000 line-up tuples were selected such that their time played
was in the top 25%; line-ups that played for longer durations
had more consistent results since the players had more time
on the court to attempt to score and defend against shots.

Each season was tested independently, so for the 1000 tu-
ples of every season, we performed 10-fold cross validation,
i.e., in each fold, 90% of the data was used for training and
10% for testing. The Synergy Graph learning algorithm used
the training sets to learn an Adversarial Synergy Graph,
and we present our results on the test sets. The Adver-
sarial Synergy Graph predicts the expected point-difference
between the line-ups, and we thresholded the results into
win/draw/loss, using ε = 0.5, e.g., a team wins if the pre-
dicted point difference ≥ ε, and loses if the prediction ≤ −ε.

5.2 Comparing to Linear Regression
To benchmark our Adversarial Synergy Graph, we com-

pared against linear regression, because it is commonly used
in predicting sports results. As mentioned above, we re-
trieved the historical statistics of the line-ups from the web-
site http://stats.nba.com and used these statistics for lin-
ear regression. In particular, we used these features for the
input to linear regression:

• Personal Fouls (PF)

• Personal Fouls Drawn (PFD)

• Total Rebounds (REB)

• Defensive Rebounds (DREB)

• Offensive Rebounds (OREB)

• Steals (STL)

• Turnovers (TOV)

• Assists (AST)

• Blocks (BLK)

• Blocks Against (BLKA)

• 3-Pointers Attempted (FG3A)

• 3-Pointers Made (FG3M)

Approach
NBA Season

2007-2008 2008-2009 2009-2010
Ad. Syn. 63.2± 3.8% 63.2± 4.4% 69.9± 5.6%
L. Regr. 46.2± 2.3% 40.4± 7.0% 38.0± 4.8%
Random 42.1± 4.3% 45.2± 6.5% 44.2± 4.2%
All Win 44.1± 2.8% 45.8± 5.2% 46.1± 4.8%
All Lose 45.1± 3.3% 45.6± 6.3% 46.9± 5.4%
All Draw 10.8± 3.5% 8.6± 3.4% 7.1± 2.2%

Table 2: Test Accuracy of Adversarial Synergy Graph (Ad.
Syn), linear regression (L. Regr.) and other approaches in
predicting win, loss, and draw in line-ups of basketball.

• 3-Pointers Percentage (FG3P)

• Field Goals Attempted (FGA)

• Field Goals Made (FGM)

• Field Goals Percentage (FGP)

• Free Throws Attempted (FTA)

• Free Throws Made (FTP)

• Free Throws Percentage (FTP)

These statistics were chosen because they are the most
common statistics available for players and line-ups. Note
that we retrieved the statistics for the line-ups and not for
the overall team, as the variance in these statistics are rather
large within the team. To our knowledge, most existing
work focus on the statistics of the entire team, so considering
the statistics of the line-ups for linear regression is already
a novel step, and should aid in the final prediction of the
outcome of the entire game. However, in the context of
the experiments for this paper, since we were predicting the
outcome when two line-ups face off against each other, we
believe that it makes more sense to consider the statistics of
the line-ups themselves, rather than the overall statistics of
the teams.

The linear regression model was trained using the statis-
tics listed above for both line-ups, and the point-difference.
Some line-ups did not play for a significant amount of time
during the entire season, and their statistics were not avail-
able online, so we excluded those line-ups from the training
and testing data sets. During testing, the statistics were
again used to generate a prediction of the expected point-
difference, and then thresholded into win/draw/loss (identi-
cal to our thresholding for the Adversarial Synergy Graph
prediction). Note that the linear regression technique re-
quires these statistics of the line-ups. Our Adversarial Syn-
ergy Graph approach does not. We only require the identi-
ties of the players in the line-ups, and the point difference
between the two line-ups.

5.3 Experimental Results
Table 2 shows the prediction accuracy in the test set for

the 10-fold cross validation, of the Adversarial Synergy Graph
(Ad. Syn.) and linear regression (L. Regr.), as well as bench-
marks that always return win, lose or draw regardless of the
line-ups, and a policy that randomly returned win, lose or
draw. The random policy picked the outcome based on the
proportions of win/lose/draw in the training set.



Our results clearly show that our Adversarial Synergy
Graph approach outperforms linear regression and the other
benchmarks. For example, our Adversarial Synergy Graph
had an average accuracy of 65.5±5.5% compared with linear
regression’s 41.5±6.0%. The random and static policies had
similar performance to linear regression, which shows that
considering the line-ups’ statistics may not significantly im-
prove the prediction of outcomes in 5v5 line-ups.

Thus, the Adversarial Synergy Graph returns a result that
is much better than random, and yet only requires limited
input for training, i.e., the members of both line-ups and
their point difference. During testing, our approach only
requires the identities of the line-ups. We do not require
any other external information such as the statistics of the
players of the line-ups, which other techniques such as linear
regression require.

6. CONCLUSION AND FUTURE WORK
We introduced the Adversarial Synergy Graph (AdSyn)

model to predict the outcome of a adversarial zero-sum game,
that is an improvement over previous Synergy Graph mod-
els, in that opponents are also represented. We applied
the Adversarial Synergy Graph model to human basket-
ball data from the National Basketball Association (NBA)
games, where each human player is a vertex in the Adver-
sarial Synergy Graph.

The Adversarial Synergy Graph was learned using the
2007-08, 2008-09, 2009-10 NBA data, and we outperformed
the benchmark of linear regression. Furthermore, the AdSyn
requires only the training data of the line-up members of
both teams and the point difference. In contrast, linear re-
gression and other similar approaches in the literature re-
quire a much larger set of highly domain-specific informa-
tion.

It is interesting that the Adversarial Synergy Graph model
can predict the outcome of line-ups that have not previously
met (or coordinated) in games, by modeling the interactions
of the players in previous games in the training data set.
Thus, it demonstrates that the Adversarial Synergy Graph
model is suitable for modeling complex interactions among
agents without prior coordination in adversarial tasks. In
comparison, methods that rely heavily on historical data
would be unable to make any predictions on new combina-
tions of lineups. In particular, most, if not all, of the existing
literature on sports predictions only consider predicting the
outcomes of whole games, and typically consider the statis-
tics of the team and not the individual line-ups.

As future work, we aim to learn a Adversarial Synergy
Graph of all 444 players, and improve the prediction accu-
racy of our approach.

7. REFERENCES
[1] D. Buursma. Predicting Sports Events from Past

Results. In 14th Twente Student Conference on IT,
2010.

[2] C. Cao. Sports data mining technology used in
basketball outcome prediction. Master’s thesis, Dublin
Institute of Technology, 2012.

[3] M. Haghighat, H. Rastegari, and N. Nourafza. A
Review of Data Mining Techniques for Result
Prediction in Sports. Advances in Computer Science:
an International Journal, 2(5):7–12, 2013.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. Witten. The WEKA Data
Mining Software: An Update. SIGKDD Explorations,
11(1), 2009.

[5] J. Kahn. Neural Network Prediction of NFL Football
Games. University of Wisconsin – Electrical and
Computer Engineering Department, 2003.

[6] S. Liemhetcharat and M. Veloso. Modeling and
Learning Synergy for Team Formation with
Heterogeneous Agents. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems, pages 365–375, 2012.

[7] S. Liemhetcharat and M. Veloso. Weighted Synergy
Graphs for Role Assignment in Ad Hoc Heterogeneous
Robot Teams. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 5247–5254, 2012.

[8] S. Liemhetcharat and M. Veloso. Forming an Effective
Multi-Robot Team Robust to Failures. In Proceedings
of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5240–5245, 2013.

[9] S. Liemhetcharat and M. Veloso. Synergy Graphs for
Configuring Robot Team Members. In Proceedings of
the International Conference on Autonomous Agents
and Multiagent Systems, pages 111–118, 2013.

[10] S. Liemhetcharat and M. Veloso. Weighted Synergy
Graphs for Effective Team Formation with
Heterogeneous Ad Hoc Agents. Journal of Artificial
Intelligence, 208(2014):41–65, 2014.

[11] D. Miljkovic, L. Gajic, A. Kovacevic, and Z. Konjovic.
The Use of Data Mining for Basketball Matches
Outcomes Prediction. In International Symposium on
Intelligent Systems and Informatics, pages 309–312,
2010.

[12] K. Trawinski. A Fuzzy Classification System for
Prediction of the Results of the Basketball Games. In
IEEE International Conference on Fuzzy Systems,
pages 1–7, 2010.


