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ABSTRACT
Several competing human behavior models have been proposed
to model and protect against boundedly rational adversaries in re-
peated Stackelberg security games (SSGs). However, these existing
models fail to address three main issues which are extremely detri-
mental to defender performance. First, while they attempt to learn
adversary behavior models from adversaries’ past actions (“attacks
on targets”), they fail to take into account adversaries’ future adap-
tation based on successes or failures of these past actions. Second,
they assume that sufficient data in the initial rounds will lead to
a reliable model of the adversary. However, our analysis reveals
that the issue is not the amount of data, but that there just is not
enough of the attack surface exposed to the adversary to learn a
reliable model. Third, current leading approaches have failed to in-
clude probability weighting functions, even though it is well known
that human beings’ weighting of probability is typically nonlinear.
Moreover, the performances of these models may be critically de-
pendent on the learning algorithm used to learn the parameters of
these models. The first contribution of this paper is a new human
behavior model, SHARP, which mitigates these three limitations as
follows: (i) SHARP reasons based on success or failure of the ad-
versary’s past actions on exposed portions of the attack surface to
model adversary adaptiveness; (ii) SHARP reasons about similar-
ity between exposed and unexposed areas of the attack surface, and
also incorporates a discounting parameter to mitigate adversary’s
lack of exposure to enough of the attack surface; and (iii) SHARP
integrates a non-linear probability weighting function to capture the
adversary’s true weighting of probability. Our second contribution
is a comparison of two different approaches for learning the param-
eters of the bounded rationality models.

Our third contribution is a first “longitudinal study” – at least in
the context of SSGs – of competing models in settings involving
repeated interaction between the attacker and the defender. This
study, where each experiment lasted a period of multiple weeks
with individual sets of human subjects, illustrates the strengths and
weaknesses of different models and shows the advantages of SHARP.

1. INTRODUCTION
Whereas previous real-world deployments of Stackelberg Secu-

rity Games (SSGs) to protect airports, ports or flights have been
one-shot game models [29], recent work has focused on domains
involving repeated interactions between defenders and adversaries.
∗This paper is based on the following AAMAS’15 full paper- "A
Game of Thrones": When Human Behavior Models Compete in
Repeated Stackelberg Security Games. The second contribution
mentioned in the abstract and discussed later in the paper along
with detailed experimental results is a new contribution as com-
pared to the AAMAS’15 paper.

These domains include security of wildlife (repeated interactions
between rangers and poachers) [31], security of fisheries (repeated
interactions between coast guard and illegal fishermen) [10], for-
est protection or drug interdiction, and are modeled via repeated
SSGs. In a repeated SSG model, the defender periodically deploys
new patrol strategies (in “rounds” of the game) and the adversary
observes these strategies and acts accordingly.

Research in repeated SSGs has produced different approaches to
address uncertainty in key dimensions of the game such as payoff
uncertainty (but assuming a perfectly rational adversary) [3, 18, 21]
or uncertainty in adversary behavior model (but assuming known
payoffs) [10, 31]. Our work follows the second approach, learning
a model of boundedly rational adversaries with known adversary
payoffs, as (arguably) it provides a better fit for domains of inter-
est in this work. This is because (i) in real-world settings such as
wildlife or fishery protection, it is feasible to model adversary pay-
offs via animal or fish density in different locations; and (ii) there
is significant support in the literature for bounded rationality of hu-
man adversaries [32, 26].

Unfortunately, despite the promise of Bounded Rationality mod-
els in Repeated Stackelberg Games (henceforth referred to as BR-
RSG models), existing work in this area [10, 31] suffers from three
key limitations which are extremely detrimental to defender perfor-
mance. First, existing models reason about the adversary’s future
actions based on past actions taken but not the associated successes
and failures. Our analysis reveals that the adversary adapts in future
rounds based on past success and failure. Hence, failing to consider
an adaptive adversary leads to erroneous predictions about his fu-
ture behavior, and thus significantly flawed defender strategies.

Second, existing approaches for learning BR-RSG models as-
sume that enough data will be collected in the initial rounds to
learn a reliable adversary model. Our analysis reveals that the is-
sue is not the amount of data, but insufficient exposure of attack
surface [12, 19] in initial rounds to gather sufficient information
about adversary responses to various strategies and learn a reliable
model. Learning is biased towards the limited available informa-
tion and hence significant losses are incurred by the defender until
enough of the right kind of data becomes available. This degraded
performance in initial rounds may have severe consequences for
three reasons: (i) In domains like wildlife crime or fisheries protec-
tion, each round lasts for weeks or potentially months and so initial
round losses (if massive) could imply irrecoverable losses of re-
sources (e.g., animal populations). (ii) Following heavy losses, hu-
man defenders may lose confidence in recommendations provided
by the game-theoretic approach. (iii) Given the nature of these do-
mains, re-initialization of the game may periodically be necessary



and thus initial rounds may be repeated; in domains such as wildlife
crime, re-initialization can stem from man-made or natural changes
in parks, e.g., changes in vegetation, water bodies, or possible de-
velopmental activities. The construction of an oil-refinery [1] and
the simultaneous re-introduction of rhinos in the Murchison Falls
National Park in Uganda is an example. In addition, re-initializing
the game after a year or so would mean repeating the initial rounds
after four to five rounds, adding to the importance of addressing
initial rounds.

Third, BR-RSG models have failed to include probability weight-
ing functions (how humans “perceive” probabilities), even though
it is well known that probability weighting curves for humans –
e.g., in prospect theory [30] – are typically nonlinear. In light of
this, we show that direct application of existing models such as
SUQR [26] which assume a linear probability model, provide re-
sults that would be extremely detrimental to defender performance.

The primary contribution of this paper is a new model called
SHARP (Stochastic Human behavior model with AttRactiveness
and Probability weighting) that mitigates these three limitations: (i)
Modeling the adversary’s adaptive decision making process, SHARP
reasons based on success or failure of the adversary’s past actions
on exposed portions of the attack surface. (ii) Addressing lim-
ited exposure to significant portions of the attack surface in ini-
tial rounds, SHARP reasons about similarity between exposed and
unexposed areas of the attack surface, and also incorporates a dis-
counting parameter to mitigate adversary’s lack of exposure to enough
of the attack surface. (iii) Addressing shortcomings of probability
weighting functions, we incorporate a two parameter probability
weighting function in existing human behavior models.

One additional aspect that can influence the performance of these
behavioral models is the learning algorithm used to learn the pa-
rameters of these models. Past research has only focused on using
Maximum Likelihood Estimation (MLE) to learn the model param-
eters [26, 10, 31]. Therefore, the second contribution in this paper
is to explore the effects of using Bayesian Updating to learn our
model parameters by comparing its performance to that of MLE.

Our third contribution is to provide evidence from the first “lon-
gitudinal study” of competing models in repeated SSGs. In our
study, a suite of well-established models and SHARP take the bat-
tlefield in an attempt to prove themselves best in repeated SSGs.
Our results show: (i) SHARP outperforms existing approaches con-
sistently over all rounds, most notably in initial rounds. (ii) As dis-
cussed earlier, existing approaches perform poorly in initial rounds
with some performing poorly throughout all rounds. (iii) Surpris-
ingly, simpler models which were originally proposed for single-
shot games performed better than recent advances which are geared
specifically towards addressing repeated SSGs. Taken together,
given the critical importance of the repeated ‘initial rounds’ as dis-
cussed above, these results indicate that SHARP should be the model
of choice in repeated SSGs.

2. BACKGROUND

2.1 Background on SSGs
In an SSG, the defender plays the role of a leader who protects

a set of targets from the adversary, who acts as the follower [4,
27, 16]. The defender’s pure strategy is an assignment of a lim-
ited number of security resources M to the set of targets T . An
assignment of a resource to a target is also referred to as covering a
target. A defender’s mixed-strategy x (0 ≤ xi ≤ 1; i ∈ T ) is then
defined as a probability distribution over the set of all possible pure
strategies. A pure strategy of an adversary is defined as attacking
a single target. The adversary receives a reward Rai for selecting i

if it is not covered and a penalty P ai for selecting i if it is covered.
Similarly, the defender receives a reward Rdi for covering i if it is
selected by the adversary and penalty P di for not covering i if it is
selected. Then, utility for the defender for protecting target i while
playing mixed strategy x is:

Udi (x) = xiR
d
i + (1− xi)P di (1)

Similarly, the utility for the adversary for attacking target i is:

Uai (x) = (1− xi)Rai + xiP
a
i (2)

Recent work has focused on modeling boundedly rational adver-
saries in SSGs, developing models discussed below.
Subjective Utility Quantal Response (SUQR): SUQR [26] builds
upon prior work on quantal response (QR) [23] models. In the
QR models, rather than strictly maximizing utility, an adversary
stochastically chooses to attack targets, i.e., the adversary attacks a
target with higher expected utility with a higher probability. SUQR
proposes a new utility function called Subjective Utility, which is
a linear combination of key features that are considered to be the
most important in each adversary decision-making step. Nguyen
et al. [26] experimented with three features: defender’s coverage
probability, adversary’s reward and penalty at each target. Accord-
ing to this model, the probability that the adversary will attack tar-
get i is given by:

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(3)

where SUai (x) is the Subjective Utility of an adversary for attack-
ing target i when defender employs strategy x and is given by:

SUai (x) = ω1xi + ω2R
a
i + ω3P

a
i (4)

The vector ω = (ω1, ω2, ω3) encodes information about the adver-
sary’s behavior and each component of ω indicates the relative im-
portance the adversary gives to each attribute in the decision mak-
ing process. The weights are computed by performing MLE on
available attack data.
Bayesian SUQR: SUQR assumes that there is a homogeneous pop-
ulation of adversaries, i.e., a single ω is used to represent an adver-
sary in [26]. However, in the real-world we face heterogeneous
populations. Therefore Bayesian SUQR is proposed to learn a par-
ticular value of ω for each attacker [31]. Protection Assistant for
Wildlife Security (PAWS) is an application which was originally
created using Bayesian SUQR.
Robust SUQR: Robust SUQR [10] combines data-driven learning
and robust optimization to address settings where not enough data
is available to provide a reasonable hypothesis about the distribu-
tion of ω. It computes the worst-case expected utility over all previ-
ously seen SUQR models of the adversary and deploys the optimal
strategy against the adversary type that reduces the defender’s util-
ity the most. Robust SUQR is reported to be applied to the fisheries
protection domain[10].

2.2 Probability Weighting Functions
Probability weighting functions model human perceptions of prob-

ability. Perhaps the most notable one is the weighting function in
nobel-prize winning work on Prospect Theory [15, 30], which sug-
gests that people weigh probability non-uniformly, as shown in Fig.
1. It indicates that people tend to overweigh low probabilities and
underweigh high probabilities. Other works in this domain propose
and experiment with parametric models which capture both inverse
S-shaped as well as S-shaped probability curves [8] (Fig. 2).



Figure 1: Probability Weighting
Function (Prospect Theory)

Figure 2: Probability Weighting
Function (Gonzalez & Wu, 99)

3. RELATED WORK
We have already discussed related work in SSGs in the previous

section, including key behavioral models. Here we discuss addi-
tional related work:
Learning in repeated Stackelberg games: The problem of learn-
ing the adversary’s payoffs in an SSG by launching a minimum
number of games against a perfectly rational adversary is studied
in [18, 3]. Additionally, Marecki et al. [21] focused on optimiz-
ing the defender’s overall utility during the learning process when
faced with a perfectly rational adversary with unknown payoffs.
Robust strategies in repeated games: In cases where the oppo-
nent cannot be successfully modeled, McCracken et al. [22] pro-
posed techniques to generate ε-safe strategies which bound the loss
from a safe value by ε. Johanson et al. [14, 13] studied the prob-
lem of generating robust strategies in a repeated zero-sum game
while exploiting the tendency in the adversary’s decision making
and evaluated their technique in a game of two-player, Limit Texas
Hold’em. Recently, Ponsen et al. [28] proposed techniques to com-
pute robust best responses in partially observable stochastic games
using sampling methods.

All of the above work differs from ours in three ways: (i) They do
not model bounded rationality in human behavior; (ii) They do not
consider how humans weigh probabilities; and (iii) None of these
existing work address the important problem of significant losses
in the initial rounds. This is a critical problem in domains such
as wildlife security as explained above; requiring a fundamental
shift at least in the learning paradigm for SSGs. In addition, work
on learning in SSGs differs because in our game, the payoffs are
known but we are faced with boundedly rational adversaries whose
parameters in their behavioral model are to be learned.

4. WILDLIFE POACHING GAME
We conducted longitudinal experiments1 [20] with human sub-

jects to test the effectiveness of existing behavioral models and al-
gorithms against our proposed approach on repeated SSGs.

4.1 Game Overview
In our game, human subjects play the role of poachers looking to

place a snare to hunt a hippopotamus. The game interface is shown
in Fig. 3. In the game, the portion of the park shown in the map
is divided into a 5*5 grid, i.e. 25 distinct cells. Overlaid on the
Google Maps view of the park is a heat-map, which represents the
rangers’ mixed strategy x — a cell i with higher coverage prob-
ability xi is shown more in red, while a cell with lower coverage
probability is shown more in green. As the subjects play the game,
they are given the following detailed information: Rai , P ai and xi
for each target i. However, they do not know the pure strategy
that will be played by the rangers, which is drawn randomly from
1Whereas “longitudinal study” is often used to describe research that spans years – in
which measurement occasions are conducted every X years – we use the term longitu-
dinal study because our study included 5 measurement points with a single population.

Figure 3: Game Interface for our simulated online repeated SSG (Re-
ward, penalty and coverage probability for a selected cell are shown)

mixed strategy x shown on the game interface. Thus, we model the
real-world situation that poachers have knowledge of past pattern
of ranger deployment but not the exact location of ranger patrols
when they set out to lay snares. In our game, there were M = 9
rangers protecting this park, with each ranger protecting one grid
cell. Therefore, at any point in time, only 9 out of the 25 distinct
regions in the park are protected.

In addition to animal density, which is strongly correlated with
high-risk areas of poaching [25, 24, 9], distance is another im-
portant factor in poaching, e.g., recent snare-density studies have
found that significant poaching happens within 5 kilometers of South
Africa’s Kruger National Park border [17]. Therefore, the reward
obtained by a poacher in successfully placing a snare at target i
is calculated by discounting the animal density by a factor of the
distance traveled and is calculated as follows:

Rai = int(φi − ζ ∗
Di

max
j

(Dj)
) (5)

Here, φi and Di refer to the animal density at target i and the dis-
tance to target i from the poacher’s starting location respectively.
int(y) rounds the value y to the closest integer value. The param-
eter ζ is the importance given to the distance factor in the reward
computation and may vary based on the domain. When the poacher
successfully poaches, he may thus obtain a reward that is less than
the animal density (Eqn. 5), but the defender loses a value equal to
that of the animal density, i.e., the game is non-zero-sum. For our
experiments we set P ai and Rdi to constant values over all targets.

4.2 Experimental Procedures
We recruited human subjects on Amazon Mechanical Turk (AMT).

We first primed participants with a background story about the
hardships of a poacher’s life. To enhance understanding of the
game, participants played two trial games, one validation game,
and finally the actual game. Data from subjects who played the
validation game incorrectly were discarded.

We tested a set of behavioral models introduced in Section 2.1
by deploying the mixed strategy generated based on each of these
models repeatedly over a set of five rounds. For each model, we
recruited a new set of participants to eliminate any learning bias.
Due to unavailability of data, the strategy shown for each first round
was Maximin. We then learned the model parameters based on
previous rounds’ data, recomputed and redeployed strategies, and
asked the same players to play again in the subsequent rounds. For
each model, all five rounds were deployed over a span of weeks.

4.3 Payoff Structures



(a) ADS1 (b) ADS2

Figure 4: Animal density structures

The payoff structures used in our human subject experiments
vary in terms of the animal densities and hence the adversary re-
wards. We henceforth refer to payoff structures and animal density
structures interchangeably in this paper. The total number of ani-
mals in all the payoffs we generate is the same (= 96). However, the
variation in these payoffs is in the way that the animals are spread
out in the park. In payoff structure 1, the animal density is concen-
trated towards the center of the park, whereas the animal density is
higher towards the edges of the park in payoff structure 2. These
represent scenarios that might happen in the real world. The an-
imal density for both payoffs is symmetric, thus eliminating any
bias due to the participant’s starting point in the game. Figs. 4(a)–
4(b) show heatmaps of two animal density structures, denoted as
ADS1 and ADS2 respectively. More details can be found here2.

5. SHARP: PROBABILITY WEIGHTING
This paper contributes a novel human behavior model called SHARP

for BR-RSG settings. SHARP has three key novelties, of which
probability weighting is the first one. The need for probability
weighting became apparent after our initial experiments. In partic-
ular, initially following up on the approach used in previous work
[26, 33, 31, 10], we applied MLE to learn the weights of the SUQR
model based on data collected from our human subject experiments
and found that the weights on coverage probability were positive
for all the experiments. That is, counter-intuitively humans were
modeled as being attracted to cells with high coverage probability,
even though they were not attacking targets with very high cov-
erage but they were going after targets with moderate to very low
coverage probability. Examples of the learned weights for SUQR
from data collected from the first round deployment of the game for
48 human subjects on ADS1 and ADS2 are: (ω1, ω2, ω3)=(2.876,
-0.186, 0.3) and (ω1, ω2, ω3)=(1.435, -0.21, 0.3). We prove a theo-
rem (Theorem 5.1) to show that, when the weight on the coverage
probability in the SUQR model (ω1) is found to be positive, the op-
timal defender strategy is a pure strategy. The proof of the theorem
can be found here2.

THEOREM 5.1. When ω1 > 0, the optimal defender strategy is
a pure strategy.

Employing a pure strategy means that there will be no uncertainty
about the defender’s presence. Several cells will always be left
unprotected and in those cells, the attackers will always succeed.
In our example domains, even if the top-valued cells are covered
by a pure strategy, we can show that such a strategy would lead
to significantly worse defender expected utility than what results
from the simplest of our defender mixed strategies deployed. For
example, if cells of value 4 are left unprotected, the defender ex-
pected value will be -4, which is much lower than what we achieve
even with Maximin. In repeated SSG domains like wildlife crime,
this would mean that the poachers successfully kill animals in each
round without any uncertainty of capture by rangers.

We hypothesize that this counter-intuitive result of a model with
ω1 > 0 may be because the SUQR model may not be consider-
2
http://onlineappendixalaworkshop2015.weebly.com/

ing people’s actual weighting of probability. SUQR assumes that
people weigh probabilities of events in a linear fashion, while ex-
isting work on probability weighting (Sec. 2.2) suggests otherwise.
To address this issue, we augment the Subjective Utility function
with a two-parameter probability weighting function (Eqn. 6) pro-
posed by Gonzalez and Wu [8], that can be either inverse S-shaped
(concave near probability zero and convex near probability one) or
S-shaped.

f(p) =
δpγ

δpγ + (1− p)γ (6)

The SU of an adversary denoted by ‘a’ can then be computed as:

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i (7)

where f(xi) for coverage probability xi is computed as per Eqn.
6. The two parameters δ and γ control the elevation and curvature
of the function (Fig. 2) respectively. γ < 1 results in an inverse
S-shaped curve while γ > 1 results in an S-shaped curve.

We will refer to this as the PSU (Probability weighted Subjective
Utility) function and the models (SUQR, Bayesian SUQR and Ro-
bust SUQR) augmented with PSU will be referred to as P-SUQR,
P-BSUQR and P-RSUQR respectively. Our SHARP model will use
PSU. We will use these PSU-based models in our experiments.

One of our key findings, based on experiments with the PSU
function is that the curve representing human weights for proba-
bility is S-shaped in nature, and not inverse S-shaped as prospect
theory suggests. The S-shaped curve indicates that people would
overweigh high probabilities and underweigh low to medium prob-
abilities. Examples of learned curves are shown in Sec. 9.2. Re-
cent studies [2, 11, 7] have also found S-shaped probability curves
which contradict the inverse S-shaped observation of prospect the-
ory. Given S-shaped probability weighting functions, the learned
ω1 was negative as it accurately captured the trend that significantly
higher number of people were attacking targets with low to medium
coverage probabilities and not attacking high coverage targets.
Feature Selection and Weight Learning: In Sec. 4.1, we in-
troduced a new feature – distance – that affected the reward and
hence the obvious question for us was to investigate the effect of
this new feature in predicting adversary behavior. We considered
several variations of PSU with different combinations of features
and found that it gives better prediction accuracy when the follow-
ing four features are used while computing the Subjective Utility
of the adversary: coverage probability, animal density, adversary
penalty and distance from starting location, as shown in Eqn. 8.

SUai (x) = ω1f(xi) + ω2φi + ω3P
a
i + ω4Di (8)

We learn a 6-tuple b =< δ, γ, ω1, ω2, ω3, ω4 > (δ and γ due to
inclusion of Eqn. 6) from available data. To learn the behav-
ioral parameters b from available data, we propose an algorithm
based on Repeated Random Sub-sampling Validation (see online
appendix2). For P-SUQR , we learn a single b, while for P-BSUQR
and P-RSUQR we learn a set of b ∈ B for each attacker.

Based on our experiments, in addition to ω1 < 0, we also found
ω2 > 0, ω3 < 0 and ω4 < 0. The rest of the formulations in this
paper will be based on these observations about the feature weights.

6. SHARP: ADAPTIVE UTILITY MODEL
A second major innovation in SHARP is the adaptive nature of

the adversary and addressing the issue of attack surface exposure.
First, we define key concepts, present evidence from our experi-
ments, and then present SHARP’s innovations.

Definition The attack surface α is defined as the n-dimensional

http://onlineappendixalaworkshop2015.weebly.com/


(a) Maximin ADS2 (b) P-RSUQR ADS2

Figure 5: Evidence for adaptivity of attackers

space of the features used to model adversary behavior. Formally,
α =< F 1, F 2, ..., Fn > for features F j(∀j; 1 ≤ j ≤ n).

For example, as per the PSU model in Eqn. 8, this would mean the
space represented by the following four features: coverage proba-
bility, animal density, adversary penalty and distance from the start-
ing location.

Definition A target profile βk ∈ α is defined as a point on the
attack surface α and can be associated with a target. Formally,
βk =< F 1

k , F
2
k , ..., F

n
k > denotes the kth target profile on the

attack surface.

In our example domain, the kth target profile can be represented as
βk =< xβk , φβk , P

a
βk
, Dβk >, where xβk , φβk , P aβk andDβk de-

note values for coverage probability, animal density, attacker penalty
and distance from starting location respectively3. For example,
<0.25, 2, -1, 4> is the target profile associated with the top-leftmost
cell in ADS1 for the first round. Exposing the adversary to a lot of
different target profiles would therefore mean exposing the adver-
sary to more of the attack surface and gathering valuable informa-
tion about their behavior. While a particular target location, defined
as a distinct cell in 2-d space, can only be associated with one target
profile in a particular round, more than one target may be associ-
ated with the same target profile in the same round. βik denotes that
target profile βk is associated with target i in a particular round.

6.1 Observations and Evidence
Below are two observations from our human subjects data, based

on the above concepts, that reveal interesting trends in attacker be-
havior in repeated SSGs.

OBSERVATION 1. Adversaries who have succeeded in attack-
ing a target associated with a particular target profile in one round,
tend to attack a target with ‘similar’ target profiles in next round.

OBSERVATION 2. Adversaries who have failed in attacking a
target associated with a particular target profile in one round, tend
not to attack a target with ‘similar’ target profiles in the next round.

In order to provide evidence in support of Observations 1 and 2,
we show results from our data highlighting these trends on ADS2

in Figs. 5(a) - 5(b). Results of other models on ADS1 and ADS2

can be found in the online appendix2. In each plot, the y-axis de-
notes the percentage of (i) attacks on similar targets out of the total
successful attacks in the previous round (ζss) and (ii) attacks on
similar targets out of the total failed attacks in the previous round
(ζfs). The x-axis denotes pairs of rounds for which we are comput-
ing the percentages, for example, in R12, 1 corresponds to round
(r − 1) and 2 means round r in our claim. Thus, ζss correspond-
ing to R23 in ADS2 is 80%, meaning that out of all the people
3In our experiments, φβi > 0, P aβi < 0 and Dβi > 0

who succeeded in round 2, 80% attacked similar target profiles in
round 3. Similarly, ζfs corresponding to R23 in ADS2 is 33.43%,
meaning that out of all people who failed in round 2, 33.43% at-
tacked similar target profiles in round 3. All statistical significance
results reported below are on two-tailed t-tests at confidence=0.05.
The average (over all four models on two payoffs and for all round
pairs) of ζss is 75.2% and the average of ζfs which is 52.45%. This
difference is statistically significant, thus supporting Observation 1
and Observation 2.

These observations are also consistent with the “spillover effect”
in psychology [6], which in our case suggests that an adversary
will tend to associate properties of unexposed target profiles with
knowledge about similar target profiles to which he has been ex-
posed, where similarity is expressed in terms of the Euclidean dis-
tance between two points on the attack surface. Smaller distance in-
dicates higher similarity. The above aspects of adversary behavior
currently remain unaccounted for, in BR-RSG models. Based on
observations above, we define two key properties below to capture
the consequences of past successes and failures on the adversary’s
behavior and reason based on them.

Definition The vulnerability associated with a target profile βi
which was shown to the adversary in round r, denoted V rβi , is de-
fined as a function of the total number of successes and failures on
the concerned target profile in that round (denoted by successrβi
and failurerβi respectively). This is shown in Eqn. 9:

V rβi =
successrβi − failure

r
βi

successrβi + failurerβi
(9)

Therefore, more successful attacks and few failures on a target
profile indicate that it was highly vulnerable in that round. Because
multiple targets can be associated with the same target profile and
the pure strategy generated based on the mixed strategy x in a par-
ticular round may result in a defender being present at some of
these targets while not at others, there may be both successes and
failures associated with the same target profile in that round.

Definition The attractiveness of a target profile βi at the end of
roundR, denotedARβi , is defined as a function of the vulnerabilities
for βi from round 1 to round R. It is computed using Eq. 10.

ARβi =

∑R
r=1 V

r
βi

R
(10)

Therefore, we model the attractiveness of a target profile as the
average of the Vulnerabilities for that target profile over all the
rounds till round R. This is consistent with the notion that a tar-
get profile which has led to more successful attacks over several
rounds will be perceived as more attractive by the adversary.

6.2 SHARP’s Utility Computation
Existing models (such as SUQR, which is based on the subjec-

tive utility function (Eqn. 4)) only consider the adversary’s actions
from round (r − 1) to predict their actions in round r. However,
based on our observations (Observations 1 & 2), it is clear that the
adversary’s actions in a particular round are dependent on his past
successes and failures. The adaptive probability weighted subjec-
tive utility function proposed in Eq. 11 captures this adaptive na-
ture of the adversary’s behavior by capturing the shifting trends in
attractiveness of various target profiles over rounds.

ASURβi = (1− d ∗ARβi)ω1f(xβi) + (1 + d ∗ARβi)ω2φβi

+(1 + d ∗ARβi)ω3P
a
βi + (1− d ∗ARβi)ω4Dβi (11)



There are three main parts to SHARP’s computation: (i) Adapt-
ing the subjective utility based on past successes and failures on
exposed parts of the attack surface; (ii) Discounting to handle situ-
ations where not enough attack surface has been exposed; and (iii)
Reasoning about similarity of unexposed portions of the attack sur-
face based on other exposed parts of the attack surface.

The intuition behind the adaptive portion of this model is that,
the subjective utility of target profiles which are highly attractive to
the adversary should be increased, and that of less attractive target
profiles should be decreased, to model the adversary’s future de-
cision making. Hence, for a highly attractive target profile βi, the
attacker would view the coverage xβi and distance from starting
locationDβi to be of much lower value, but the animal density φβi
to be of higher value, as compared to the actual values. The contri-
bution of the penalty term would also increase the utility (recall that
P aβi < 0 and ω3 < 0). Taking an example from our game, for a tar-
get profile βi =< 0.25, 2,−1, 4 > which hadA1

βi
= 1 after round

1, and the weights learned were b =< δ, γ, ω1, ω2, ω3, ω4 > =<
2.2, 2.4,−3, 0.9,−0.3,−0.5 >, P-SUQR would compute the sub-
jective utility as -0.29, while (assuming d (explained later) = 0.25,
for example) SHARP’s adaptive utility function would compute the
subjective utility as 0.855. In comparison to the original subjective
utility function, this function is adaptive due to the positive or nega-
tive boosting of model weights based on the defender’s knowledge
about the adversary’s past experiences. Here, learning the model
parameters b has been decoupled from boosting the model param-
eters for future prediction to ensure simplicity in terms of both the
model formulation as well the weight learning process.

Now we turn to the next aspect of SHARP’s utility computa-
tion. Recall the problem that the defender does not necessarily have
information about the attacker’s preferences for enough of the at-
tack surface in the initial rounds. This is because, the attacker is
exposed to only a limited set of target profiles in each round and
the defender progressively gathers knowledge about the attacker’s
preferences for only those target profiles. We provide evidence in
support of this observation in Sec. 9.3.

The parameter d (0 ≤ d ≤ 1) in Eqn. 11 mitigates this attack
surface exposure problem. It is a discounting parameter which is
based on a measure of the amount of attack surface exposed. d is
low in the initial rounds when the defender does not have enough of
the right kind of data, but would gradually increase as more infor-
mation about the attacker’s preferences about various regions of the
attack surface become available. For our experiments, we varied d
based on Eqn. 12:

d =
1

Nr − r
(12)

where Nr is the total number of rounds and r is the round whose
data is under consideration. For example, Nr = 5 and r = 1
for data collected in round 1 of an experiment conducted over five
rounds. The intuition behind this formulation is that, as more rounds
are played, more information about the adversary’ preferences for a
lot of the attack surface will be available and hence d will increase
from a very small value gradually as rounds progress.

Finally, we look at how we reason about unexposed portions of
the attack surface based on the exposed areas. If a target profile
βu was not exposed to attacker response in round r, the defender
will not be able to compute the vulnerability V rβu . Therefore, we
will also not be able to estimate the attractiveness for βu and hence
the optimal defender strategy. So, in keeping with our analysis on
available data and based on the spillover effect introduced earlier,
we use the distance-weighted k-nearest neighbors algorithm [5] to
obtain the Vulnerability V rβu of an unexposed target profile βu in

round r, based on the k most similar target profiles which were
exposed to the attacker in round r (Eqns. 13 and 14).

V rβu =

∑k
i=1 θi ∗ V

r
βi∑k

i=1 θi
(13)

θi ≡
1

d(βu, βi)2
(14)

where, d(βu, βi) denotes the Euclidean distance between βu and
βi in the feature space. We use k = 5 for our experiments.

7. GENERATING DEFENDER STRATEGIES
AGAINST SHARP

While SHARP provides an adversary model, we must now gen-
erate defender strategies against such a model. To that end, we first
learn the parameters of SHARP from available data (See Sec. 5).
We then generate future round strategies against the boundedly ra-
tional adversary characterized by the learned model parameters by
solving the following optimization problem:

max
x∈X

[∑
i∈T

Udi (x) qRi (ω |x)

]
(15)

qRi (ω|x) is the probability that the adversary will attack target i in
round R and is calculated based on the following equation:

qRi (ω|x) =
e
ASUR

βi
k

(x)

∑
i∈T
e
ASUR

βi
k

(x)
(16)

βik denotes that target profile βk is associated with target i. ASUR
βi
k

and Udi (x) are calculated according to Eqns. 11 and 1 respectively.
To solve the non-linear and non-convex optimization problem in

Eqn. 15 and generate the optimal defender strategy, we use PASAQ
[34] as it provides an efficient approximate computation of the de-
fender strategy with near-optimal solution quality.

8. LEARNING SUQR PARAMETERS: AL-
TERNATIVES TO MLE

Instead of using MLE to learn a particular ω = (ω1, ω2, ω3, ω4)
from data collected till a particular round of the game, we can
alternatively perform Bayesian updating on available data. Let
us consider a discrete set of samples Ω of weight vectors, i.e.,
Ω =< ω1, ω2, ..., ω|Ω| > where each element in the set is a 4-
tuple, i.e. ωs = (ωs1, ω

s
2, ω

s
3, ω

s
4) ; ∀s = 1to|Ω|. Let us define a

probability distribution p =< p1, p2, ..., p|Ω| > over the elements
in Ω. Then, as we collect data in a particular round r, we can up-
date our prior probability distribution before round r, denoted as
pr−1, to the posterior distribution pr . Now, assuming a homoge-
neous population of adversaries as in SUQR, we can use Algorithm
1 to update pr−1 to pr as all the attacks are considered to be per-
formed by a single adversary. The distribution learned from data
collected over multiple rounds tells us which is the most probable
adversary type causing the attacks. Algorithm 1 helps us get closer
to that true ω. In Algorithm 1, χr−1 is the attack data collected in
round r − 1, χir−1 is the target number for the ith attack in round
r − 1 and xr−1 is the mixed strategy deployed in round r − 1.

However, considering a heterogeneous population of adversaries
as in Bayesian SUQR, we can use Algorithm 2 to update pr−1 to
pr . In Algorithm 2, |χir−1| denotes the number of attacks per-
formed on target i in round r − 1. In this case, the probability



Algorithm 1 BU (xr−1, χr−1, Ω, pr−1)
Output: estimated distribution pr .
1: b = pr−1

2: for i=1 to |χr−1| do
3: for s=1 to |Ω| do

4: bs =
bs∗q

χi
r−1

(ωs,xr−1)∑
m bm∗q

χi
r−1

(ωm,xr−1)

5: end for
6: end for
7: pr = b;

distribution p gives us the probability of occurrence of each at-
tacker type in a heterogeneous population of adversaries. Line 3
of Algorithm 2 updates the prior based on an attack on a particular
target. Then line 7 computes the weighted average of these sepa-
rate probability distributions based on the number of attacks on the
corresponding targets (i.e., by the corresponding attacker type). In
Section 9.4, we will explore the effects of using Algorithms 1 and
2, as opposed to using MLE.

Algorithm 2 BU-Learn (xr−1, χr−1, Ω, pr−1)
Output: estimated distribution pr .
1: for i=1 to |T | do
2: for s=1 to |Ω| do
3: ipsr =

psr−1qi(ω
s,xr−1)∑

m pmr−1qi(ω
m,xr−1)

4: end for
5: end for
6: for s=1 to |Ω| do

7: psr =
∑
i |χ

i
r−1|p

s
r∑

i |χir−1|

8: end for

9. RESULTS WITH HUMAN SUBJECTS

9.1 Defender Utilities
In Figs. 6(a)- 6(b) we show actual defender utilities obtained

over 5 rounds for P-SUQR, P-BSUQR, P-RSUQR, SHARP and
Maximin on ADS1 and ADS2 respectively, with an average of 37
human subjects playing per round. In the plots, y-axis corresponds
to defender utility and the models tested for each round is shown
on the x-axis. For example, in Fig. 6(b), P-SUQR performs worst
in round 2 with utility of -5.26. In Fig. 6(b), we also show (inset)
zoomed in results of the second round to highlight the difference
in performance between Maximin (= -0.18) and SHARP (= -0.1).
First round utilities for all models are same as Maximin strategy
was played due to absence of data. All significance results reported
below are computed with bootstrap t-test. Following are key obser-
vations from our experiments.
Heavy initial round losses: For all models except SHARP, there
is statistically significant (p=0.05) loss in defender utility as com-
pared to Maximin in round 2. P-SUQR recovers from initial round
losses and outperforms Maximin in rounds 3, 4 and 5 for ADS1

(statistically significant at p=0.05), and in round 4 (statistically sig-
nificant at p=0.15) and round 5 for ADS2. P-RSUQR, which is a
robust model, also outperforms Maximin in rounds 4 and 5 (statis-
tically significant at p=0.05) for ADS1 after initial round losses.
Surprisingly, P-BSUQR, which is the basis for wildlife security ap-
plication PAWS, performs worst on both payoffs over all rounds.
Figs. 6(c)- 6(d) show cumulative defender utility over five rounds
onADS1 andADS2 respectively. Observe that it takes five rounds

(a) Results on ADS1 (b) Results on ADS2

(c) Results on ADS1 (d) Results on ADS2

Figure 6: (a), (b): Defender utilities for various models on
ADS1 and ADS2 respectively; (c), (d): Cumulative defender
utilities for various models on ADS1 and ADS2 respectively.

(a) Results on ADS1 (b) Probability curves

Figure 7: (a) Comparison of defender utilities between P-
SUQR, SHARP and SHARP(d=1) onADS1; (b) Learned prob-
ability curves for P-SUQR on ADS1 from rounds 1 to 4.

for P-SUQR to recover from initial round losses and outperform
Maximin in terms of cumulative defender utility for ADS1 (Fig.
6(c)). None of the other models recover from the initial round
losses in five rounds, thus highlighting the impact of initial round
losses on model performance for a long period of time.
Performance of SHARP against other models: SHARP consis-
tently outperforms (statistically significant at p=0.05) all the mod-
els over all rounds (Figs. 6(a)- 6(b)), most notably in initial rounds
(round 2) and ends up with significantly high cumulative utility at
the end of all rounds (Figs. 6(c)- 6(d)).
Performance of SHARP (with and without discounting): To test
the effectiveness of the design decisions in SHARP, we considered
SHARP both with and without discounting. SHARP with d = 1
is compared against SHARP and P-SUQR on ADS1 in Fig. 7(a).
SHARP(d = 1) outperforms P-SUQR (statistically significant at
p=0.05) because it captures the adaptive nature of the adversary.
However, it performs worse than SHARP (statistically significant
at p=0.01) as SHARP also trusts the data less when we don’t have
enough information about the adversary’s responses to most of the
attack surface; in this case the initial rounds.

Therefore, our results on extensive human subjects experiments
on repeated SSGs show SHARP’s ability to perform well through-
out, including the important initial rounds.

9.2 Learned Probability Curves



(a) For ADS1

Figure 8: Total number of unique exposed target profiles till
the end of each round for each coverage probability interval
for ADS1.

Fig. 7(b) shows human perceptions of probability in rounds 1 to
4 when the participants were exposed to P-SUQR based strategies
on ADS1. Learned curves from P-SUQR and SHARP on all pay-
offs have this S-shaped nature (See online appendix2), showing that
even though there is little change in the curvature between rounds,
it retains the same S-shape throughout all rounds. The curves in-
dicate that people weigh high probabilities to be higher and low to
medium probabilities to be lower than the actual values.

9.3 Attack surface exposure
In our repeated SSG, the only variation in terms of feature values

for our model (Eqn. 11) from round to round is the mixed strategy
x and hence the coverage xi at each target. Hence, exposure to var-
ious regions of the attack surface means exposure to various values
of xi for fixed values of the other model parameters. Fig. 8 shows
how the adversary was exposed to more unique values of the cov-
erage probability, and hence attack surface, over the five rounds for
ADS1. We discretized the range of xi, i.e. [0,1] into 10 intervals
(x-axis) and show the total number of unique coverages exposed till
a particular round (y-axis) for each interval. Observe that more in-
terval ranges and more unique coverage probabilities get exposed
in rounds 3 to 5. As we showed in Fig. 6(a), the defender per-
formance for P-SUQR improves significantly in rounds 4 and 5.
Similar plot for ADS2 is shown in the online appendix2.

9.4 Bayesian Updating vs MLE
In this section, we present results of using Algorithms 1 and 2

and evaluate their performance in comparison to MLE on avail-
able human subjects data collected in our experiments. We com-
puted the probability of attack on each target in round r (for the
actual deployed strategy in round r) after learning from attack data
collected in the previous rounds. We then computed the sum of
squared errors over all targets with respect to the actual attack prob-
ability for each round. The results are shown in Figs. 9(a) - 9(f).
We observe that Algorithm 2 (denoted as BU-Learn-SUQR) per-
forms significantly better than MLE in round two on four out of six
datasets (statistically significant via t-test with p=0.05). The per-
formances are similar on other rounds. Algorithm 1 (denoted as
BU-SUQR) performs significantly better than MLE in round two
on two out of six datasets (statistically significant via t-test with
p=0.05), on four datasets in round three (statistically significant via
t-test with p=0.05) and has similar or better performances in other
rounds. This indicates that Bayesian updating can be a competitive
approach to learning weights for the behavioral models and high-
lights the need to conduct human subjects experiments with these
algorithms to test their effectiveness.

(a) PSUQR−ADS1 Data (b) PSUQR−ADS2 Data

(c) PRSUQR−ADS1 Data (d) PRSUQR−ADS2 Data

(e) PBSUQR−ADS1 Data (f) PBSUQR−ADS2 Data

Figure 9: Sum of Squared Errors (SSE) over all targets of per
round predictions for MLE, BU-Learn-SUQR and BU-SUQR
on various datasets.

10. CONCLUSION
This paper provides three major contributions that are critical for

important domains such as protection of wildlife, fish and forests.
First, it introduces a novel human behavior model called SHARP
for repeated SSG settings. SHARP has three major novelties: (i)
It models the adversary’s adaptive decision making process by rea-
soning based on success or failure of the adversary’s past actions
on exposed portions of the attack surface. (ii) It accounts for lack
of information about the adversary’s preferences due to insufficient
exposure to attack surface by reasoning about similarity between
exposed and unexposed areas of the attack surface, and also in-
corporating a confidence based discounting parameter to model the
learner’s trust in the available data. (iii) It integrates a non-linear
probability weighting function. Second, we explored the impor-
tance of different learning approaches, for example, Bayesian up-
dating, and found the need to conduct further human subjects ex-
periments to test its performance and compare it to MLE based
learning approaches. Third, we conducted the first “longitudinal
study” of competing models in repeated SSGs to test the perfor-
mance of SHARP along with existing approaches. Our results show
that: (i) Human perceptions of probability are S-shaped, contra-
dicting the inverse S-shaped observation from prospect theory. (ii)
Existing human behavior models and algorithms perform poorly in
initial rounds of repeated SSGs. (iii) SHARP performs significantly
better than existing approaches consistently over all the rounds,
most notably in the initial rounds.
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